Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(3x^2+1\right)^{10}\left(x+1\right)^{10}\)
Do tất cả các số hạng chứa x trong khai triển \(\left(3x^2+1\right)^{10}\) đều mũ chẵn và số hạng tự do duy nhất bằng 1
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) bằng hệ số của số hạng chứa \(x^5\) trong khai triển \(\left(x+1\right)^{10}\)
Theo khai triển nhị thức Newton thì hệ số này bằng 252
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
Ta có
5 x + 2 y − 3 x − y = 99 x − 3 y = 7 x − 4 y − 17 ⇔ 5 x + 10 y − 3 x + 3 y = − 17 x − 3 y − 7 x + 4 y = − 17 ⇔ 6 x + 39 y = 297 − 6 x + y = − 17
⇔ − 6 x + y = − 17 40 y = 280 ⇔ 2 x + 13 y = 99 − 6 x + y = − 17 ⇔ y = 7 x = 4
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (4; 7)
Đáp án: C
\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)
Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)
\(\Leftrightarrow m>-5\) (1)
Để \(y>0\) \(\Leftrightarrow40-6m< 0\)
\(\Leftrightarrow m>\dfrac{20}{3}\) (2)
\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)
Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)