\(^{x^4}\) trog đa thức

p= \(\left(x^3-2x^2+x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

11 tháng 8 2019

Có 2 cách là dùng phép chia và xét giá trị riêng: mình sẽ dùng cách chia bạn mún làm cách kia thì bảo mình

                      Bài làm

Mà mình nghĩ là tìm m chứ bạn

a) 

  10x^2-7x+m 2x-3 5x 10x^2-15x - 8x+m +4 8x-12 - m+12

Để \(f\left(x\right)⋮2x-3\)\(\Leftrightarrow m+12=0\)

                                    \(\Leftrightarrow m=-12\)

Vậy m=-12

11 tháng 8 2019

b) đầu bài có sai ko chia 3 á

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?

9 tháng 8 2018

mk ghi đáp án, còn lại bạn tự biến đổi

a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)

b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)

9 tháng 8 2018

mk làm chi tiết theo yêu của của người hỏi đề:

a) \(2x^3-x^2+5x+3\)

\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)

\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

b)  \(x^3+5x^2+8x+4\)

\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)

\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:
\(P=5x(3x^2-x+2)-2x^2(x-2)+15(x-1)\)

\(=15x^3-5x^2+10x-2x^3+4x^2+15x-15\)

\(=13x^3-x^2+25x-15\)

Từ đây ta có thể thấy hệ số của $x^2$ trong đa thức là $-1$

18 tháng 7 2019
https://i.imgur.com/cMIzM8U.jpg