Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề thì bạn chỉ tính được tổng $a+b$ thôi chứ sẽ không tính được cụ thể giá trị $a,b$.
a) Ta có : \(A\left(x\right)=x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9
=3x^2+x
c: H(x)=0
=>x(3x+1)=0
=>x=0 hoặc x=-1/3
A = x7 - 2x5 + 2x3 + 5x5 + 2x7 - 3x - 7
A = (x7 + 2x7) - (2x5 - 5x5) + 2x3 - 3x - 7
A = 3x7 + 3x5 + 2x3 - 3x - 7
Hệ số cao nhất: 3
Hệ số tự do: -7
B = \(\frac{1}{2}\)x + x3 - 4x2 - \(\frac{3}{2}\)x - 2x3 - 5 + x2
B = (\(\frac{1}{2}\)x - \(\frac{3}{2}\)x) + (x3 - 2x3) - (4x2 - x2) - 5
B = -x - x3 - 3x2 - 5
B = -x3 - 3x2 - x - 5
Hệ số cao nhất: -1
Hệ số tự do: -5
Chúc bn học tốt!
Ta có
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2 Và Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1
Khi đó
M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1
Bậc của M ( x ) = - x 3 + x 2 + 4 x - 1 l à 3
Chọn đáp án C
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
\(2x^3+11x^2+ax+b⋮x^2+3x-1\)
=>\(2x^3+6x^2-2x+5x^2+15x-5+\left(a-13\right)x+b+5⋮x^2+3x-1\)
=>\(\left\{{}\begin{matrix}a-13=0\\b+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=13\\b=-5\end{matrix}\right.\)