\(\dfrac{x}{6}=\dfrac{y}{10}\) và x+y=8.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{x}{6}\)=\(\dfrac{y}{10}\)=\(\dfrac{x+y}{6+10}\)=\(\dfrac{8}{16}\)=\(\dfrac{1}{2}\)Do đó :\(\dfrac{x}{6}\)=\(\dfrac{1}{2}\)=> x = 3\(^{\dfrac{y}{10}}\)=\(\dfrac{1}{2}\)=>y=5Vậy x=3 ; y=5

27 tháng 7 2017

\(\text{Câu 1: }\\ \text{Theo bài ra ta có : }x+y-z=10\\ \dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\\ \dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{3y}{12}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\\ \text{Từ }\left(1\right)\text{ và }\left(2\right)\text{ suy ra : }\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\\ \text{ Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\Rightarrow x=16\\\dfrac{y}{12}=2\Rightarrow y=24\\\dfrac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\\ \text{Vậy }x=16\\ y=24\\ z=30\)

\(\text{Câu 2 : }\\ \text{Ta có : }\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{5}\right)^2=\dfrac{x}{2}\cdot\dfrac{y}{5}=\dfrac{xy}{2\cdot5}=\dfrac{7+3}{10}=\dfrac{10}{10}=1\\ \Rightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{2}\right)^2=1\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\\\left(\dfrac{y}{5}\right)^2=1\Rightarrow\dfrac{y}{5}=1\Rightarrow y=5\end{matrix}\right.\\ \text{Vậy }x=2\\ y=5\)

27 tháng 7 2017

Câu 3 : \(\dfrac{\text{Giải}}{ }\)

Gọi số học sinh 4 khối \(6,7,8,9\) lần lượt là \(a;b;c;d\) \(\left(a;b;c;d\in N\text{*}\right)\) \(\left(em\right)\)

Theo bài ra ta có : \(b-d=70\)

\(a;b;c;d\) tỉ lệ với \(9;8;7;6\) \(\Rightarrow\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}=\dfrac{b-d}{8-6}=\dfrac{70}{2}=35\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{9}=35\Rightarrow a=315\\\dfrac{b}{8}=35\Rightarrow b=280\\\dfrac{c}{7}=35\Rightarrow c=245\\\dfrac{d}{6}=35\Rightarrow d=210\end{matrix}\right.\)

\(\text{Vậy }a=315\\ b=280\\ c=245\\ d=210\)

18 tháng 4 2017

Đặt k = . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được = 1 suy ra x = 2, y = 5

Với k = -1 ta được = -1 suy ra x = -2, y = -5

8 tháng 7 2017

Gọi \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

Với \(\dfrac{x}{2}=k\Rightarrow x=2k\); \(\dfrac{y}{5}=k\Rightarrow y=5k\)

Theo đề bài,ta còn có:

\(xy=10\)

hay 2k.5k=10

10k2 =10

\(\Rightarrow k=\pm1\)

Với k=1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=1\Rightarrow x=2;y=5\)

Với k=-1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=-1\Rightarrow x=-2;y=-5\)

10 tháng 6 2017

\(x=-6;x=-15.\)

17 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=\(\dfrac{x+y}{2+5}\)=\(\dfrac{-21}{7}\)=-3

=>\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=5x=2y

=>x=5.-3=-15

=>y=2.-3=-6

Vậy x=-15;y=6

14 tháng 10 2017

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{x+y-z}{20+24-21}=\dfrac{138}{23}\)=6

\(\Rightarrow\dfrac{x}{20}=6\Rightarrow x=120\)

\(\Rightarrow\dfrac{y}{24}=6\Rightarrow y=144\)

\(\Rightarrow\dfrac{z}{21}=6\Rightarrow z=126\)

Vậy : x = 120

y = 144

z = 126

30 tháng 12 2017

a)

Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)

\(-x+y-z=11_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:

\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)

Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)

Vậy.....

b); c); d); e) làm tương tự.

9 tháng 6 2017

\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)

=> 2(2x+1) = 6.7

4x+2=42

4x=40

x=10

Vậy x=10

a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\\ =>6.7=2.\left(2x+1\right)\\ =>2x+1=\dfrac{6.7}{2}=\dfrac{42}{2}=21\\ =>2x=21-1=20\\ =>x=\dfrac{20}{2}=10\)

b) \(\dfrac{24}{7x-3}=-\dfrac{4}{25}\\ =>24.25=-4.\left(7x-3\right)\\ =>7x-3=\dfrac{24.25}{-4}=-150\\ =>7x=-150+3=-147\\ =>x=\dfrac{-147}{7}=-21\)

c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\\ =>x-6=\dfrac{4.18}{-12}=-6\\ =>x=-6+6=0\\ y=\dfrac{-12.24}{18}=-16\)

d) \(-\dfrac{1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\\ < =>-\dfrac{8}{40}\le-\dfrac{5x}{40}\le\dfrac{10}{40}\\ =>-8\le-5x\le10\\ Mà:-8< -5.1< -5.0< -5.\left(-1\right)< -5.\left(-2\right)=10\\ =>x\in\left\{-2;-1;0;1\right\}\)

e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\\ < =>\dfrac{x+46}{20}=\dfrac{5x+2}{5}\\ =>5\left(x+46\right)=20\left(5x+2\right)\\ < =>5x+230=100x+40\\ < =>230-40=100x-5x\\ < =>190=95x\\ =>x=\dfrac{190}{95}=2\)

f) \(y\dfrac{5}{y}=\dfrac{56}{y}\\ < =>\dfrac{y^2+5}{y}=\dfrac{56}{y}\\ =>y\left(y^2+5\right)=56y\\ =>y^2+5=\dfrac{56y}{y}=56\\ =>y^2=56-5=51\\ =>y=\sqrt{51}\)

19 tháng 9 2017

a) \(\dfrac{x}{3}=\dfrac{y}{7}\) và x + y = 20

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\dfrac{x}{3}=2\Rightarrow x=6\)

\(\dfrac{y}{7}=2\Rightarrow y=14\)

Vậy x và y lần lượt là 6 và 14

b) \(\dfrac{x}{5}=\dfrac{y}{2}\) và x - y = 6

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\dfrac{x}{5}=2\Rightarrow x=10\)

\(\dfrac{y}{2}=2\Rightarrow y=4\)

Vậy x và y lần lượt là 10 và 4

9 tháng 10 2017

a) \(\dfrac{x}{3}=\dfrac{y}{4}\)\(x+y=20\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

Ta có: \(3k+4k=20\)

\(\Rightarrow7k=20\)

\(\Rightarrow k=\dfrac{20}{7}\) (1)

Thay (1) vào, ta có:

\(\left\{{}\begin{matrix}x=3.\dfrac{20}{7}\\y=4.\dfrac{20}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{60}{7}\\y=\dfrac{80}{7}\end{matrix}\right.\)

Vậy...

b) \(\dfrac{x}{5}=\dfrac{y}{2}\) và x - y = 6

Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)

Ta có: 5k - 2k = 6

3k = 6

k = 2 (1)

Thay (1) vào, ta có:

\(\left\{{}\begin{matrix}x=5.2\\y=2.2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)

Vậy ....

17 tháng 9 2017

Ta có :

\(x-y+z=8\)

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=2\Leftrightarrow x=4\\\dfrac{y}{4}=2\Leftrightarrow y=8\\\dfrac{z}{6}=2\Leftrightarrow z=12\end{matrix}\right.\)

Vậy ..

16 tháng 12 2017

Ta có \(\frac{x+5}{2}=\frac{y-2}{3}\)và \(x-y=-10\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y-2}{2-3}=\frac{x-y+5-2}{2-3}=\frac{-10+5-2}{2-3}=\frac{-7}{-1}=7\)

=> \(\frac{x+5}{2}=7\)=> x + 5 = 14 => x = 9

và \(\frac{y-2}{3}=7\)=> y - 2 = 21 => y = 23

12 tháng 9 2017

a)\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\dfrac{x}{3}=2\Rightarrow x=6\)

\(\dfrac{y}{7}=2\Rightarrow y=14\)

b)\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\dfrac{x}{5}=2\Rightarrow x=10\)

\(\dfrac{y}{2}=2\Rightarrow y=4\)