Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán không rõ ràng nên mình chia ra làm hai cái nhé.
----
ĐỀ 1: Chứng minh rằng `i+u+v+uv=(i+u)(i+v)` với mọi `u,i,v`
Ta có: `(i+u)(i+v)=i(i+v)+u(i+v)=i^2+iv+ui+uv\ne i+u+v+uv`
Vậy đề sai
-----
ĐỀ 2: Tìm điều kiện `u,i,v` để `i+u+v+uv=(i+u)(i+v)` đúng
`(i+u)(i+v)= i+u+v+uv`
`<=>i^2+iv+ui+uv= i+u+v+uv`
`<=>i^2-i+iv-v+ui-u=0`
`<=>i(i-1)+v(i-1)+u(i-1)=0`
`<=>(i-1)(i+v+u)=0`
`=>i=1` hoặc `i+u+v=0`
phân tích tử trc cho đỡ mất công gõ cả ps
u4-u3v+u2v2-uv3
=(u4+u2v2)-(u3v+uv3)
=u2(u2+v2)-uv(u2+v2)
=(u2-uv)(u2+v2)
=u(u-v)(u2+v2)
Thay vào ta có \(\frac{u\left(u-v\right)\left(u^2+v^2\right)}{u^2+v^2}=u\left(u-v\right)=u^2-uv\)
1. \(3x\left(x^2+2y\right)^2-12xy\left(x^2+y\right)\)\(=3x\left(x^4+4x^2y+4y^2\right)-12x^3y-12xy^2\)
\(=3x^5+12x^3y+12xy^2-12x^3y-12xy^2=3x^5\)
2. \(u^2v^2\left(u+v\right)^2-\left(u^2v+uv^2\right)^2\)
\(=u^2v^2\left(u^2+2uv+v^2\right)-\left(u^4v^2+2u^3v^3+u^2v^4\right)\)
\(=u^4v^2+2u^3v^3+u^2v^4-u^4v^2-2u^3v^3-u^2v^4=0\)
u^2v^2(u+v)^2-(u^2v+uv^2)^2 - Step-by-Step Calculator - Symbolab
Tham khảo ở đó nhé!
\(\frac{AB}{CD}=\frac{3}{5}\)
\(\frac{CD}{EF}=\frac{70}{50}=\frac{7}{5}\)
\(\frac{MN}{PQ}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{RS}{UV}=\frac{2}{40}=\frac{1}{20}\)
Chúc bn học tốt!!
1: Số lớn là 60:4*5=75
Số bé là 75-60=15
2: Số lớn là 147*6/7=126
Số bé là 147-126=21
3:
Số thứ nhất là (100+42)/2=142/2=71
Số thứ hai là 71-42=29