K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 1 2021

a) \(ƯCLN\left(a,b\right)=6\Rightarrow a=6m,b=6n\left(a,b\inℕ^∗\right)\)

Giả sử \(a\ge b\Rightarrow m\ge n\).

\(a+b=96\Rightarrow6m+6n=96\Leftrightarrow m+n=16\)

Chia bảng xét các trường hợp của \(m,n\)ta được kết quả. 

b) Làm tương tự câu a). 

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

a, b: Bạn xem lại đề.

c.

Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=12x+12y=120\Rightarrow x+y=10$

Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:

$(x,y)=(9,1), (7,3)$

$\Rightarrow (a,b)=(108. 12), (84, 36)$

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

d.

Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=28x+28y=224$

$\Rightarrow x+y=8$

Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$

$\Rightarrow (a,b)=(196, 28), (140, 84)$

11 tháng 12 2016

ý a : a = 1;b = 18 

ý b : a=1;b=4

ý c : a = 12 ; b = 84

12 tháng 12 2016

kết quả độ ra thì đơn giản nhưng cách trình bày mới quan trọng

AH
Akai Haruma
Giáo viên
18 tháng 1

Lời giải:

a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Khi đó: $BCNN(a,b)=dxy$

Theo bài ra: $d+dxy=19$

$\Rightarrow d(1+xy)=19$

Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:

TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$

Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$

$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$

b,c bạn làm tương tự theo hướng của câu a nhé.

15 tháng 11 2015

Bạn vào câu hỏi tương tự nhé !

8 tháng 11 2021

Ta có :

\(a=m.c\)

\(b=n.c\)

\(\Rightarrow\) \(ƯCLN\left(a,b\right)=c\)

\(BCNN\left(a,b\right)=c.m.n\)

Vì  \(ƯCLN\left(a,b\right)=16\Rightarrow a=16m\)

\(b=16n\)

Sao cho \(ƯCLN\left(m,n\right)=1\)

\(BCNN\left(a,b\right)=16.m.n\)

\(\Rightarrow\)\(240=16.m.n\)

\(\Rightarrow\)\(m.n=15\)

m11535
n15153
a162404880
b240168048

Vây \(\left(a,b\right)\)thỏa mãn :

\(\left(16;240\right);\left(240;16\right);\left(80;48\right);\left(48;80\right)\)