\(a+b=3(a-b)\)\(,\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Theo bài ra ta có:

\(a+b=3\left(a-b\right)=3a-3b.\)

\(\Leftrightarrow a+b+3b=3a\)

\(\Leftrightarrow a+4b=3a\)

\(\Leftrightarrow4b=3a-a=2a\)

\(\Rightarrow a=2b\)

Thay vào ta đươc:

\(2b:b=-\left(2b-b\right)\)

\(\Leftrightarrow2=-b\Rightarrow b=-2\)

\(\Rightarrow a=\left(-2\right).2=-4\)

Vậy \(a=-4;b=-2.\)

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

số a là

8 .( 4-3) .3 = 24

só b là 8 . (8-1) . 4 = 32

17 tháng 4 2019

a=-24;b=-32

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

ta có A=B

=>a-b+c+1=a+2

<=>c=b+1

=>đpcm

3 tháng 11 2018

Ta có : A=a-b+c + 1

            B= a+2

mà A=B =>  a-b+c+1 = a+2

                   a-b+c -a = 2-1

                   -b +c = 1

                   c - b = 1

mà 2 số nguyên liên tiếp nhau là 2 số có khonagr cách  = 1

=> c và b là 2 số nguyên liên tiếp

7 tháng 4 2020

Bài 1

a) \(\frac{5}{6}=\frac{x-1}{x}\)

<=> 5x=6x-6

<=> 5x-6x=-6

<=> -11x=-6

<=> \(x=\frac{6}{11}\)

b)c)d) nhân chéo làm tương tự

12 tháng 2 2020

a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)

A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }

b) Thiếu điều kiện n là số nguyên dương.

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)

\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)

TH1: b > a 

=> b - a > 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

TH2: b <  a 

=> b - a < 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)

=> \(\frac{a+n}{b+n}< \frac{a}{b}\)

TH1: b = a 

=> b - a = 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)

=> \(\frac{a+n}{b+n}=\frac{a}{b}\)

Kết luận:...

12 tháng 2 2020

a)Để A nguyên thì (3n+2)chia hết  cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}

b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh

18 tháng 1 2018

a) \(\frac{a}{-b}=\frac{a.\left(-1\right)}{-b.\left(-1\right)}=\frac{-a}{b}\)

\(\Rightarrow\frac{a}{-b}=\frac{-a}{b}\)

b) \(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)

\(\Rightarrow\frac{-a}{-b}=\frac{a}{b}\)

19 tháng 1 2018

a) Ta có:

\(\frac{a}{-b}=\frac{a.\left(-1\right)}{-b.\left(-1\right)}=\frac{-a}{b}\)

\(\Rightarrow\frac{a}{-b}=\frac{-a}{b}\)

b) Ta có:

\(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)

\(\Rightarrow\frac{-a}{-b}=\frac{a}{b}\)