Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có: \(\dfrac{x}{1}=\dfrac{y}{\dfrac{1}{4}}=\dfrac{y+z}{\dfrac{5}{2}}\)
và x + y + z = 280
Áp dụng t/c của dãy tỉ số bằng nhau có:
\(\dfrac{x}{1}=\dfrac{y}{\dfrac{1}{4}}=\dfrac{y+z}{\dfrac{5}{2}}=\dfrac{x+y+y+z}{1+\dfrac{1}{4}+\dfrac{5}{2}}=\dfrac{280+y}{3,75}\)
\(\Rightarrow\dfrac{y}{\dfrac{1}{4}}=\dfrac{280+y}{3,75}\Rightarrow3,75y=\dfrac{1}{4}\left(280+y\right)\)
\(\Rightarrow3,75y=70+\dfrac{1}{4}y\Rightarrow3,75y-\dfrac{1}{4}y=70\)
\(\Rightarrow3,5y=70\Rightarrow y=\dfrac{70}{3,5}=20\)
Có: \(\dfrac{x}{1}=\dfrac{y}{\dfrac{1}{4}}\Rightarrow\dfrac{x}{1}=\dfrac{20}{\dfrac{1}{4}}\Rightarrow\dfrac{1}{4}x=20\Rightarrow x=20:\dfrac{1}{4}=80\)
\(\Rightarrow z=280-\left(x+y\right)=280-100=180\)
Vậy x = 80; y = 20; z = 180
\(\dfrac{y}{0,4}\) chuyển thành y.\(\dfrac{5}{2}\)=\(\dfrac{y+z}{4}\)
suy ra \(\dfrac{x}{4}\)=y=\(\dfrac{y+z}{10}\) y= \(\dfrac{y+z}{10}\) suy ra y=\(\dfrac{y}{10}+\dfrac{z}{10}\) suy ra \(\dfrac{9}{10}y=\dfrac{1}{10}z\) suy ra \(y=\dfrac{1}{9}z\) hay z=9y x+y+z=4y+y+9y=14y 14y=280 y=280:14=20 x=20.4=80 z=280-(20+80)=180 Tick mk nhaBài 11: Tìm x, y, z:
a) x=4y=0,4(y+z)x=4y=0,4(y+z) và x+y+z=280
Ta có :
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
bạn ơi bn lấy ảnh mạng phải ko
hình ảnh girl xinh đáng yêu và quyến rũ nhất Việt Nam - Ảnh đẹp
Giải:
Ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{57}{7}\)
+) \(\frac{x}{6}=\frac{57}{7}\Rightarrow x=\frac{342}{7}\)
+) \(\frac{y}{4}=\frac{57}{7}\Rightarrow y=\frac{228}{7}\)
+) \(\frac{z}{3}=\frac{57}{7}\Rightarrow z=\frac{171}{7}\)
Vậy \(x=\frac{342}{7},y=\frac{228}{7},z=\frac{171}{7}\)
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ a nên x = y.a (1)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = z.b (2)
z tỉ lệ thuận với t theo hệ số tỉ lệ c nên z = t.c (3)
Từ (1); (2) và (3) => x = t.c.b.a
=> \(t=\frac{x}{c.b.a}=x.\frac{1}{c.b.a}\)
Vậy t tỉ lệ thuận với x và hệ số tỉ lệ là \(\frac{1}{c.b.a}\)
Ta có:
x + y = x.y => x = x.y - y = y.(x - 1)
=> x : y = x - 1 = x + y
=> y = -1
=> x = -1.(x - 1) = -x + 1
=> x + x = 1 = 2x
=> x = 1/2
Vậy x = 1/2; y = -1