Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x-1}+5.0,2^{x-2}=26\)
\(\Leftrightarrow5^{x-1}+\frac{5}{5^{x-2}}=26\)
\(\Leftrightarrow5^{x-1}+\frac{25}{5^{x-1}}=26\)
Đặt \(5^{x-1}=a\)
\(\Rightarrow a+\frac{25}{a}=26\)
\(\Leftrightarrow a^2-26a+25=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=25\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5^{x-1}=1\\5^{x-1}=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Bài 1:
a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)
\(=5-\sqrt{3}-2+\sqrt{3}=3\)
b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)
\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)
\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)
c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)
d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
ĐKXĐ: x<>2 và y<>-1
\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-2}{x-2}+\dfrac{y+2}{y+1}=\dfrac{26}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-4+2}{x-2}+\dfrac{y+1+1}{y+1}=\dfrac{26}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\2+\dfrac{2}{x-2}+1+\dfrac{1}{y+1}=\dfrac{26}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2}{x-2}+\dfrac{1}{y+1}=\dfrac{11}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{4}{x-2}+\dfrac{2}{y+1}=\dfrac{22}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{x-2}=-\dfrac{5}{5}=-1\\\dfrac{2}{x-2}+\dfrac{1}{y+1}=\dfrac{11}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2=1\\\dfrac{1}{y+1}=\dfrac{11}{5}-2=\dfrac{1}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\left(nhận\right)\)
ĐKXĐ: \(x\ne2;y\ne-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3}{x-2}+\frac{2}{y+1}=\frac{17}{5}\\\frac{2\left(x-2\right)+2}{x-2}+\frac{y+1+1}{y+1}=\frac{26}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3}{x-2}+\frac{2}{y+1}=\frac{17}{5}\\2+\frac{2}{x-2}+\frac{1}{y+1}=\frac{26}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3}{x-2}+\frac{2}{y+1}=\frac{17}{5}\\\frac{2}{x-2}+\frac{1}{y+1}=\frac{11}{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-2}=1\\\frac{1}{y+1}=\frac{1}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Nếu :
1 x 2 x 3 =5
2 x 3 x 4 = 10
3 x 4 x 5 = 17
4 x 5 x 6 = 26
Thì 6 x 7 x 8= 50
k mình nhé ^_^
Phương trình 5 x 2 + 21x − 36 = 0 có a + b + c = 5 +21 – 26 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = 1 ; x 2 = - 26 5 . Khi đó B = 5. (x − 1) x + 26 5
Đáp án: C