\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

A=\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

=>\(=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

dấu = xảy ra khi and chỉ khi

x=y=\(\frac{1}{2}\)

NV
30 tháng 5 2020

Cần điều kiện x;y dương

\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)

\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)

\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)

theo nghiệm Fx=Gx mũ 2 

suy ra x mũ 2 +1 mũ x 2 

suy ra chịch chịch chịch

31 tháng 5 2020

nguuuuuuuuuuuuuuuu

7 tháng 5 2017

khai triển ra còn 4x^2+4y^2+1/x^2+1/y^2+8 =4(x^2+y^2)+(1/x^2+1/y^2)+8

>/ 4.(x+y)^2/2+8/(x+y)^2+8=18

"=" khi x=y=1/2

7 tháng 5 2017

Đặt \(2x+\frac{1}{x}=a;2y+\frac{1}{y}=b\)

Ta có \(a^2+b^2>=2ab=>2\left(a^2+b^2\right)>=a^2+b^2+2ab=\left(a+b\right)^2\)

=>\(a^2+b^2>=\frac{\left(a+b\right)^2}{2}\)

Ta cần tìm giá trị nhỏ nhất của a+b

ta có \(a+b=2x+\frac{1}{x}+2y+\frac{1}{y}=2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}=2+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT cauchy \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)

=>\(a+b>=2+\frac{4}{x+y}=6\)

=>a\(a^2+b^2>=\frac{6^2}{2}=18\)

=>Min \(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)=18

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 8 2017

mann nào trả lời đc thui k hết 5 cái nick lun :D

22 tháng 8 2017

\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2.\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)

\(=\left[\frac{x^2-y^2}{xy}.\frac{1}{x-y}-2.\frac{x-y}{xy}\right].\frac{y}{x-y}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy.\left(x-y\right)}-\frac{2.\left(x-y\right)}{xy}\right).\frac{y}{x-y}\)

\(=\left(\frac{x+y}{xy}-\frac{2x-2y}{xy}\right).\frac{y}{x-y}=\frac{x+y-2x+2y}{xy}.\frac{y}{x-y}=\frac{y.\left(3y-x\right)}{xy.\left(x-y\right)}=\frac{3y-x}{x.\left(x-y\right)}\)

\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)

\(=\left(\frac{x+y}{2.\left(x-y\right)}-\frac{x-y}{2.\left(x+y\right)}+\frac{2y^2}{x-y}\right).\frac{x-y}{2y}\)

\(=\frac{\left(x+y\right)^2-\left(x-y\right)^2+2.2y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{\left(x+y+x-y\right)\left(x+y-x+y\right)+4y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{4xy+4xy^2+4y^3}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}=\frac{4y.\left(x+xy+y^2\right).\left(x-y\right)}{4y.\left(x-y\right)\left(x+y\right)}=\frac{x+xy+y^2}{x+y}\)

\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}.\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)

\(=3x:\left\{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\left[\frac{xy-x^2-y^2}{y}:\frac{y-x}{xy}\right]\right\}\)

\(=3x:\left[\frac{x-y}{x^2-xy+y^2}.\left(\frac{xy-x^2-y^2}{y}.\frac{xy}{y-x}\right)\right]\)

\(=3x:\left(\frac{x-y}{x^2-xy+y^2}.\frac{xy.\left(x^2-xy+y^2\right)}{y.\left(x-y\right)}\right)\)

\(=3x:\frac{xy.\left(x-y\right)\left(x^2-xy+y^2\right)}{y.\left(x-y\right)\left(x^2-xy+y^2\right)}=3x:x=3\)

\(E=\frac{2}{x.\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)

\(=2.\left(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)\)

\(=2.\frac{\left(x+2\right)\left(x+3\right)+x.\left(x+3\right)+x.\left(x+1\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{x^2+2x+3x+6+x^2+3x+x^2+x}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{3x^2+9x+6}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=2.\frac{3.\left(x^2+3x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x^2+x+2x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6.\left[x.\left(x+1\right)+2.\left(x+1\right)\right]}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x+1\right)\left(x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6}{x.\left(x+3\right)}\)

30 tháng 9 2019

Mình ko chắc lắm :

Áp dụng BĐT AM - GM ta có :

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=\frac{x^2y^2+1}{y^2}.\frac{x^2y^2+1}{x^2}=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}\)

\(=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+\frac{255}{256.\left(xy\right)^2}+2\)

\(\ge2.\frac{1}{16}+\frac{255}{256.\left(\frac{\left(x+y\right)^2}{4}\right)^2}+2\)

\(=\frac{1}{8}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)

Khi \(x=y=\frac{1}{2}\)

Chúc bạn học tốt !!!

30 tháng 5 2020

A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)

\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)

Dấu "=" xảy ra <=> x = y =1/2

Vậy GTNN của A = 25/2 tại x = y = 1/2

1 tháng 6 2020

Ta có :

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)

\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)

\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)