Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
thế nào nhỉ ( :
Từ giả thiết => 1/x +1/y +1/z <= 1
A/d BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z ) và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x) + 1/4(1/y +1/x) + 1/4(1/x + 1/z))
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.
Tìm GTNN
\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)với x,y,z là các số dương và \(x^2+y^2 +z^2=1\)
Bạn dùng HĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) nha
Bài làm :
tự c/m bđt trên.
Áp dụng t đc \(A^2\ge3\left(y^2+x^2+z^2\right)\)
->\(A\ge\sqrt{3}\)
Dấu - xảy ra khi x=x=z và x^2+y^2+z^2=1=>x=y=z=....
Gút lắc
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)
Tương tự ta có:
\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)
\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)
Cộng vế theo vế ta có:
\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)
\(=3+\frac{x+y+z-xy-yz-zx}{2}\)
Có BĐT phụ sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )
\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(P\ge3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
\(B=\frac{1^2}{x}+\frac{\left(\sqrt{2}\right)^2}{y}+\frac{2^2}{z}\ge\frac{\left(1+\sqrt{2}+2\right)^2}{x+y+z}=\frac{\left(3+\sqrt{2}\right)^2}{1}=\left(3+\sqrt{2}\right)^2\)
Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{\sqrt{2}}{y}=\frac{2}{z}=\frac{1+\sqrt{2}+2}{x+y+z}=\frac{3+\sqrt{2}}{1}\)
<=> \(x=\frac{1}{3+\sqrt{2}};y=\frac{\sqrt{2}}{3+\sqrt{2}};z=\frac{2}{3+\sqrt{2}}\).