Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

A = \(\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}\)
= \(\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\)\(\ge\)\(\sqrt{0+2}\)=\(\sqrt{2}\)
''='' <=> x = 4
=> Min A = \(\sqrt{2}\)và x = 4
B = |x-2011| + |x-1|
TH1: x \(\le\)1
=> B = 2012 - 2x \(\ge\)2010 ''='' <=> x = 1
TH2: 1\(\le\)x\(\le\)2011
=> B = x - 1 + 2011 - x = 2010 với mọi x t/m đkiện
TH3: x \(\ge\)2011
=> B = 2x - 2012 \(\ge\)2010 ''='' <=> x = 2011
Vậy Min B = 2010 <=> 1\(\le\)x\(\le\)2011

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\) khi \(x=y\)

\(A=\sqrt{\left(x-2\right)\left(x-1\right)x\left(x+1\right)+5}\)
\(=\sqrt{\left(x^2-x-2\right)\left(x^2-x\right)+5}\)
Đặt \(t=x^2-x\) ta đc:
\(A=\sqrt{\left(t-2\right)t+5}=\sqrt{t^2-2t+5}\)
\(=\sqrt{\left(t-1\right)^2+4}\ge\sqrt{4}=2\)
Dấu = khi \(t=1\Leftrightarrow x^2-x=1\Leftrightarrow x=\pm\frac{1}{2}+\frac{\sqrt{5}}{2}\)
Vậy....
b)\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)
\(=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}\)
\(=\left|x-2\right|+\left|x+3\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2\right|+\left|x+3\right|=\left|x-2\right|+\left|-x-3\right|\ge\left|x-2+\left(-x\right)-3\right|=5\)
Dấu = khi \(\left(x-2\right)\left(x+3\right)\ge0\)\(\Rightarrow-3\le x\le2\)
\(\Rightarrow\hept{\begin{cases}-3\le x\le2\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy....

a. ĐKXĐ \(x\ge0\)và \(x\ne9\)
Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)
\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)
Vậy với \(0\le x< \frac{9}{4}\)thì K<-1
c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)
\(\Rightarrow K\ge-3\)
Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(B=\sqrt{\left(x-2020\right)^2}+\sqrt{\left(x-1\right)^2}=\left|x-2020\right|+\left|x-1\right|\)
\(=\left|x-2020\right|+\left|1-x\right|\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-2020\right)\left(1-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2020\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\x\ge1\end{cases}}\Leftrightarrow1\le x\le2020\)
TH2: \(\hept{\begin{cases}x-2020>0\\1-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2020\\1>x\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2020\\x< 1\end{cases}}\)( không thỏa mãn )
Vậy \(minB=2019\)\(\Leftrightarrow1\le x\le2020\)
\(B=|x-2020|+|x-1|\)
\(=|2020-x|+|x-1|\)
Áp dụng bất đẳng thức giá trị tuyệt đối :
\(|2020-x|+|x-1|\ge|2020-x+x-1|\)
\(|2020-x|+|x-1|\ge|2020-x+x-1|\)
\(|2020-x|+|x-1|\ge|2019|\)
\(|2020-x|+|x-1|\ge2019\)
Dấu = xảy ra \(\Leftrightarrow\) \(\left(2020-x\right)\left(x-1\right)\ge0\)
Có 2 TH
TH 1 :
\(\hept{\begin{cases}2020-x\ge0\\x-1\ge0\end{cases}}\)
\(\hept{\begin{cases}-x\ge-2020\\x\ge1\end{cases}}\)
\(\hept{\begin{cases}x\le2020\\x\ge1\end{cases}\Rightarrow1\le x\le2020}\)
TH2 :
\(\hept{\begin{cases}2020-x\le0\\x-1\ge0\end{cases}}\)
\(\hept{\begin{cases}-x\le-2020\\x\le1\end{cases}}\)
\(\hept{\begin{cases}x\ge2020\\x\le1\end{cases}\Rightarrow x=\varnothing}\)