\(A=x^2+5y^2+2x-4xy-10y+14\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

A = x+ 5y2 + 2x - 4xy - 10y + 14

A = x- x+ x+ y2 + 4y2 + 2x - 4xy - 10y + 14

A = ( y2 - 10y + 25 ) - ( x2 - 2x + 1 ) + ( x2 - 4xy + 4y2 ) + x2 + 10

A = ( y - 5 )2 - ( x - 1 )2 + ( x - 2y )2 + x2 + 10 \(\ge\)10

Dấu " = " xảy ra \(\Leftrightarrow\)y - 5 = 0 và x - 1 = 0

                            \(\Rightarrow\)y        = 5 và x       = 1

Min A = 10 \(\Leftrightarrow\)y = 5 và x = 1

27 tháng 6 2020

https://olm.vn/hoi-dap/detail/88061957704.html bạn tham khảo câu hỏi này 

27 tháng 6 2020

a) \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\left(x-2y+1\right)^2\ge0\)

      \(\left(y-3\right)^2\ge0\)

 \(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)với mọi x,y (ĐPCM)
b) \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\)

Vì \(\left(2x-1\right)^2\ge0\)

      \(\left(x-3y\right)^2\ge0\)

       \(\left(y-1\right)^2\ge0\)

 \(\Rightarrow\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\ge1>0\)vợi mọi x,y (ĐPCM)

21 tháng 6 2016

\(VT=x^2+2x\left(1-2y\right)+\left(1-2y\right)^2+\left(5y^2-\left(1-2y\right)^2-10y+14\right)\)

 \(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)  voi  moi  x;y

5 tháng 10 2018

\(1,x^2-2x=24\\ x^2-2x+1=25\\ \left(x-1\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy...\)

2, AD hằng đẳng thức.

\(3,P=x^2-5x+2\\ =\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{17}{4}\\ =\left(x-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\)

Ta có : \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(x-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\forall x\\ \Leftrightarrow P\ge-\dfrac{17}{4}\\ \Rightarrow Min_P=-\dfrac{17}{4}\Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\)

20 tháng 11 2018

a) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left[\left(2y\right)^2+2\cdot2y\cdot2+2^2\right]+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x;y;z\)

\(\Rightarrowđpcm\)

b) tương tự

7 tháng 3 2020

Ta có : \(x^2+5y^2+2x-4xy-10y+14\)

\(=x^2+2x\left(1-2y\right)+\left(1-2y\right)^2-\left(1-2y\right)^2+5y^2-10y+14\)

\(=\left(x-2x+1\right)^2-1-4y^2+4y+5y^2-10y+14\)

\(=\left(x-2x+1\right)^2+y^2-6y+9+4\)

\(=\left(x-2x+1\right)^2+\left(y-3\right)^2+4\ge4>0\) (đpcm)

7 tháng 3 2020

Ta có: x2 + 5y2 + 2x - 4xy - 10y + 14 

= (x2 - 4xy + 4y2) + (2x - 4y) + 1 + (y2 - 6y + 9) + 4

= (x - 2y)2 + 2(x - 2y) + 1 + (y - 3)2 + 4

= (x - 2y + 1)2 + (y - 3)2 + 4 > 0 \(\forall\)x; y

Do (x - 2y + 1)2 \(\ge\)0; (y - 3)2 \(\ge\)0 ; 4 > 0

11 tháng 6 2016

Ta có

x^2+5y^2+2x-4xy-10y+14 
=[x^2+2x(1-2y)+(1-2y)^2]+y^2-6y+13 
=(x+1-2y)^2+(y^2-2y.3+9)+4 
=(x+1-2y)^2+(y-3)^2+4. 

(x+1-2y)^2 > hoặc=0 với mọi x,y thuộc R 
và (y-3)^2 > hoặc=0 với mọi y thuộc R 
=> (x+1-2y)^2+(y-3)^2+4 > hoặc =4 với mọi x,y thuộc R 
=> (x+1-2y)^2+(y-3)^2+4 >0 với mọi x,y thuộc R.

11 tháng 6 2016

Akai Shuichi:chép sai đề rồi con ơi :D

11 tháng 6 2018

_______________Bài làm___________________

a, \(x^2+xy+y^2+1\)

\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)

Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\dfrac{3y^2}{4}\ge0\forall y\)

Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)

b, \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)

\(\left(y-3\right)^2\ge0\forall y\)

Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

c, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Do .........

tự làm ik