K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Ta có: A=(n-1).n.(n+1).(n+2)-3 lớn nhơn hoặc bằng 3. Dấu bfng xảy ra khi n=o

Vậy GTNN của A =3 khi n=0

21 tháng 11 2016

dấu bằng nhé bạn

ta có A lớn  hơn hoặc bằng 3 dấu "=" sảy ra khi (n-1).n.(n+1).(n+2)=0

vậy min a=3 khi n=0

28 tháng 6 2019

\(a,F_{\left(x\right)}=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x+6\right)\left(x^2+5x-6\right)\)

Đặt \(x^2+5x=a\)

\(\Rightarrow F_x=\left(a+6\right)\left(a-6\right)=a^2-36\)

\(\Rightarrow F_{min}=-36\Leftrightarrow a^2=0\)

\(\Rightarrow x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy GTNN của \(F_x=-36\Leftrightarrow x\in\left\{0;-5\right\}\)

\(b,A=\left(1-x^n\right)\left(1+x^n\right)+\left(2-y^n\right)\left(2+y^n\right)\)

\(=1-x^{2n}+4-y^{2n}\)

\(=5-x^{2n}-y^{2n}\)

\(\Rightarrow A_{max}=5\Leftrightarrow\hept{\begin{cases}x^{2n}=0\\y^{2n}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

30 tháng 3 2016

Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x

Do đó MMin=2

\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)

Vậy MMin=2 tại x=2
 

30 tháng 3 2016

GTNN của M  =6

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)