K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

A=9x^2-6x+180

=9x2-6x+1+179

=(3x+1)2+179 \(\ge\)197 ( vì (3x+1)2\(\ge\)0)

dấu "=" xảy ra khi:

3x+1=0

<=>x=1/3

vậy GTNN của A là 197 tại x=1/3

B=x^2+x+2

=x2+2.x.1/2+1/4+7/4

=(x+1/2)2+7/4

dấu "=" xảy ra khi:

x+1/2=0

<=>x=-1/2

vậy GTNN của B là 7/4 tại x=-1/2

1 tháng 10 2023

\(a,A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4\right)+2\)

\(=-\left(x^2+2\cdot x\cdot2+2^2\right)+2\)

\(=-\left(x+2\right)^2+2\)

Ta thấy: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2+2\le2\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(Max_A=2\) khi \(x=-2\).

Cậu xem lại giúp mình có sai đề bài không nhé!

#\(Toru\)

1 tháng 10 2023

đề bài là tìm GTLN ạ

NV
8 tháng 7 2021

\(A=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)+\dfrac{39}{20}=5\left(x-\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)

\(A_{min}=\dfrac{39}{20}\) khi \(x=\dfrac{1}{10}\)

\(B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+2\left(y^2-\dfrac{1}{2}y+\dfrac{1}{16}\right)-\dfrac{269}{24}=3\left(x+\dfrac{1}{6}\right)^2+2\left(y-\dfrac{1}{4}\right)^2-\dfrac{269}{24}\ge-\dfrac{269}{24}\)

\(B_{min}=-\dfrac{269}{24}\) khi \(x=-\dfrac{1}{6};y=\dfrac{1}{4}\)

8 tháng 7 2021

A= 5x2-xz+2

A= (√5.x)2-2.√5.x.\(\dfrac{\text{√5}}{10}\)+\(\dfrac{1}{20}+\dfrac{39}{20}\)

A=(√5.x-\(\dfrac{\text{√5}}{10}\))2+\(\dfrac{39}{20}\)\(\dfrac{39}{20}\)

Dấu "=" xảy ra ⇔ (√5.x-\(\dfrac{\text{√5}}{10}\))=0

⇔ √5.x=\(\dfrac{\text{√5}}{10}\) ⇔ x=\(\dfrac{1}{10}\)

Vậy GTNN của A=\(\dfrac{39}{20}\) tại x=\(\dfrac{1}{10}\)

 

5 tháng 11 2019

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\)

+) Đặt \(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)\left(4-x\right)=0\)

\(\Leftrightarrow1\le x\le4\)

+) Đặt \(C=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow2\le x\le3\)

\(\Rightarrow A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge4\)

Dấu '' = '' xảy ra

\(\Leftrightarrow\hept{\begin{cases}1\le x\le4\\2\le x\le3\end{cases}\Leftrightarrow2\le x\le3}\)

Vậy.................

4 tháng 11 2019

Alan Walker bạn vào câu hỏi này tham khảo nha : https://olm.vn/hoi-dap/detail/211209248935.html

Hoặc bạn vào trong câu hỏi tương tự nha !

NV
12 tháng 7 2021

\(C=\left(x^2+\dfrac{y^2}{4}+4-xy+4x-2y\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+1011\)

\(=\left(x-\dfrac{y}{2}+2\right)^2+\dfrac{3}{4}\left(y-2\right)^2+1011\ge1011\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-1;2\right)\)

a) Ta có: \(B=x^2+4y^2+4x-4y\)

\(=\left(x^2+4x+4\right)+\left(4y^2-4y+1\right)-5\)

\(=\left(x+2\right)^2+\left(2y-1\right)^2-5\ge-5\forall x,y\)

Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-2;\dfrac{1}{2}\right)\)

5 tháng 9 2021

a) \(9x^2-6x-3=0\)

\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x^3+9x^2+27x+19=0\)

\(\Leftrightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)

\(\Leftrightarrow x=-1\)( do \(x^2+8x+19=\left(x+4\right)^2+3>0\))

c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x\left(x^2-25\right)-x^3-8=3\)

\(\Leftrightarrow x^3-25x-x^3=8\Leftrightarrow-25x=11\Leftrightarrow x=-\dfrac{11}{25}\)

5 tháng 9 2021

a)\(9x^2-6x-3=0\)

\(\Leftrightarrow\)\(3x^2-2x-1=0\)

\(\Leftrightarrow\)\(3x^2-3x+x-1=0\)

\(\Leftrightarrow\)\((3x-1)(x-1)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=1\\ x=-\dfrac{1}{3} \end{array} \right.\)

15 tháng 9 2021

1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)

\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)

2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxM=6\Leftrightarrow x=-1\)

3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)

\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)

15 tháng 9 2021

u là trời, cảm ơn bạn nhé:3

7 tháng 7 2018

\(x^3-9x+7x^2-63=0\)

\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)

\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)

\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)

Vậy ...

14 tháng 7 2021

x3−9x+7x2−63=0x3−9x+7x2−63=0

⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0

⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0

⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0

⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7

Vậy ...

NV
5 tháng 10 2021

\(C=\left(9x^2-6x+1\right)+4=\left(3x-1\right)^2+4\ge4\)

\(C_{min}=4\) khi \(x=\dfrac{1}{3}\)

\(D=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(D_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

5 tháng 10 2021

\(C=9x^2+5-6x=\left(9x^2-6x+1\right)+4=\left(3x-1\right)^2+4\ge4\)

\(minC=4\Leftrightarrow x=\dfrac{1}{3}\)

\(D=1+x^2-x=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minD=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)