\(|x|\)+ 1

b) \(|2x-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

\(a,\)\(|x|+1\)

Vì \(|x|>0\)

\(\Rightarrow|x|+1\)Nhỏ nhất \(\Leftrightarrow x=0\)

\(\Rightarrow|x|+1=1\Leftrightarrow x=0\)

17 tháng 5 2019

\(b,\)\(|2x-3|\)

\(|2x-3|\ge0\Rightarrow\)Nhỏ nhất \(\Leftrightarrow2x-3=0\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\frac{3}{2}\)

17 tháng 5 2019

a) Đặt \(A=\left|x+2\right|+\left|y-4\right|-6\)

Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\Rightarrow A\ge-6\)

\(\Rightarrow A_{min}=-6\Leftrightarrow\hept{\begin{cases}x=-2\\x=4\end{cases}}\)

b) Đặt \(B=x^2+3\)

Ta có: \(x^2\ge0\Rightarrow B\ge3\)

\(\Rightarrow B_{min}=3\Leftrightarrow x=0\)

17 tháng 5 2019

c) Đặt \(C=\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow C\ge-3\)

\(\Rightarrow C_{min}=-3\Leftrightarrow x=1\)

d) Đặt \(D=\left|x-2\right|+y^2+1\)

Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\y^2\ge0\end{cases}}\Rightarrow D\ge1\)

\(\Rightarrow D_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

7 tháng 4 2020

Bài 1

a) \(\frac{5}{6}=\frac{x-1}{x}\)

<=> 5x=6x-6

<=> 5x-6x=-6

<=> -11x=-6

<=> \(x=\frac{6}{11}\)

b)c)d) nhân chéo làm tương tự

21 tháng 3 2019

\(a)\frac{x}{8}=\frac{-30}{y}=\frac{-48}{32}\)

Rút gọn : \(\frac{-48}{32}=\frac{(-48):16}{32:16}=\frac{-3}{2}\)

* Ta có : \(\frac{x}{8}=\frac{-3}{2}\)

\(\Rightarrow x\cdot2=-3\cdot8\)

\(\Rightarrow x=\frac{-3\cdot8}{2}=-12\)

* Ta có : \(\frac{-30}{y}=\frac{-3}{2}\)

\(\Rightarrow-30\cdot2=-3\cdot y\)

\(\Rightarrow y=\frac{-30\cdot2}{-3}=20\)

Mấy bài kia làm tương tự

28 tháng 4 2019

\(\frac{-30}{y}=\frac{-48}{32}\)

\(\Rightarrow\)\(-30.32=-48y\)

\(\Rightarrow\)\(-960=-48y\)

\(\Rightarrow\)\(y=20\)

\(thay\)\(y=20\)vào đẳng thức ta được

\(\frac{x}{8}=\frac{-3}{2}\)

\(\Rightarrow\)\(2x=-24\)

\(\Rightarrow\)\(x=-12\)

vậy x = - 12,  y = 20

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

15 tháng 8 2018

tớ cũng không biết

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

22 tháng 5 2017

Đăng từ từ từng câu thoy bn!!

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...