
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)
\(A=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow \left(x-2\right)^2=0\Leftrightarrow x=2\)
\(B=x^2-x=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy \(MinB=-\frac{1}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
\(C=-\left(x+1\right)^2+3\le3\)
Vậy \(MaxC=3\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x=-1\)
a, A= (x-2)^2 +1 >= 1
Dấu "=" xảy ra <=> x-2=0 <=>x=2
Vậy Min A= 1<=> x=2
b, B= (x-1/2)^2 - 1/4>=-1/4
Dấu "=" xảy ra <=> x-1/2 = 0<=> x= 1/2
Vậy Min B= -1/4 <=> x= 1/2
c, C = 3-(x+1)^2 <=3
Dấu "=" xảy ra <=> x+1 = 0 <=> x=-1
Vậy Max C = 3 <=> x= -1

\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
\(3x^2+2x+5=\frac{9x^2+6x+15}{3}=\frac{\left(3x+1\right)^2+14}{3}\ge\frac{14}{3}\)
Dấu ''='' xảy ra khi và chỉ khi \(x=\frac{-1}{3}\)