K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017
làm ơn giúp mình bài này ai làm đượ đầu tiên mình sẽ dùng cả lích khác k cho các bạn đúng 3 lần luôn giúp mình nhes
24 tháng 3 2020

bn sai đề r

 5m ko phải 2m

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

3 tháng 8 2017

a. Từ 4+x/7+y=4/7

=>7(4+x)=4(7+x)

28+7x=28+4y

=>7x=4y

Vì x+y=22=>x=22-y

Nên 7(22-x)=4y

154-7y=4y

11y=154

y=14 =>x=8

b. Từ x/3=y/4 và y/5=z/6

=>x/15=x/20=z/24 (1)

Từ (1):ta có 2x/30=3y/60=4z/96=2x+3y+4z/186(2)

Ta lại có:3x/45=4y/80=5z/120=3x+4y+5z/245(3)

Từ (2) và (3):2x+3y+4z/3x+4y+5z=186/245

26 tháng 11 2019

bn hok lớp 8 mà ko bt lm bài lớp 7 à

3 tháng 4 2018

Ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (do \(x+y+z\ne0\))

\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Leftrightarrow x=y=z\)

Thay \(x=y=z\) vào \(N=\frac{x^{123}.y^{456}}{z^{579}}\), ta có :

\(N=\frac{x^{123}.x^{456}}{x^{579}}\)

\(\Leftrightarrow\frac{x^{579}}{x^{579}}=1\)

Vậy N = 1

26 tháng 4 2021

fai fai ối dồi ôi luôn

1 tháng 3 2017

Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)  \(\left(k\in R\right)\)

\(\Rightarrow x=3k;y=7k;z=2k\) Thay vào biểu thức \(\frac{2x-3y+5z}{x+4y-3z}\) ta được :

\(\frac{2x-3y+5z}{x+4y-3z}=\frac{2.3k-3.7k+5.2k}{3k+4.7k-3.2k}=\frac{k\left(2.3-3.7+5.2\right)}{k\left(3+4.7-3.2\right)}=\frac{6-21+10}{3+28-6}=\frac{-5}{25}=-\frac{1}{5}\)

Vậy \(\frac{2x-3y+5z}{x+4y-3z}=-\frac{1}{5}\) tại \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

31 tháng 7 2016

 đk:x=/-2;x=/-3 
ft<=>(x-1)(x+3)=(x+2)(x-2) 
<=>x*2+2x-3=x*2-4 
<=>2x=-1 
<=>x=-1/2(tm) 
Vậy ft có nọ x=-1/2