K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

\(f\left(x\right)=2x^2+x-6\)

Xét \(f\left(x\right)\) trên \(\left[0;\sqrt{3}\right]\)

\(-\frac{b}{2a}=-\frac{1}{4}\notin\left[0;\sqrt{3}\right]\)

\(f\left(0\right)=-6;f\left(\sqrt{3}\right)=\sqrt{3}\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=-6\)

\(f\left(x\right)_{max}=f\left(\sqrt{3}\right)=\sqrt{3}\)

28 tháng 2 2021

$A = x(x^2 - 6)$

$A = x^3 - 6x$

Áp dụng bấtt đẳng thức $AM-GM$ ta được:

$x^3 + 2\sqrt2 + 2\sqrt2 \geq 3\sqrt[3]{x^3.8}= 6x$

$\Rightarrow x^3 - 6x \geq - 4\sqrt2$

$\Rightarrow A \geq -4\sqrt2$

Dấu $=$ xảy ra $\Leftrightarrow x^3 = 2\sqrt2 \Leftrightarrow x = \sqrt2$

Vậy $\min A = -4\sqrt2 \Leftrightarrow x =\sqrt2$

22 tháng 10 2021

Giúp mình với 

 

22 tháng 10 2021

Áp dụng BĐT cosi:

\(A=\left(3x+\dfrac{3}{x}\right)+\left(\dfrac{4}{9}y+\dfrac{4}{y}\right)+\left(2x+y\right)\\ A\ge2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{9y}}+5\\ A\ge2\cdot3+2\cdot\dfrac{4}{3}+5=\dfrac{41}{3}\)

Vậy \(A_{min}=\dfrac{41}{3}\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{3}{x}\\\dfrac{4y}{9}=\dfrac{4}{y}\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

\(M=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu = xảy ra khi x=0

13 tháng 5 2021

*Max
Xét `P-4`
`=(4\sqrtx+3-4x-4)/(x+1)`
`=(-4x+4\sqrtx-1)/(x+1)`
`=(-(2\sqrtx-1)^2)/(x+1)<=0`
`=>P<=1`
Dấu "=" `<=>2\sqrtx=1<=>x=1/4`
*Min
Xét `P+1`
`=(4\sqrtx+3+x+1)/(x+1)`
`=(x+4\sqrtx+4)/(x+1)`
`=(\sqrtx+2)^2/(x+1)>=0`
`=>P>=-1`
Dấu "=" `<=>\sqrtx+2=0<=>\sqrtx=-2`(vô lý)
=>Không có giá trị nhỏ nhất.

9 tháng 10 2015

\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)

\(A=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=4\)

Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\) <=> \(\sqrt{x}+3=5\) <=> x = 4

Vậy....

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

Ta thấy:

$\Delta=(m+3)^2-8m=m^2-2m+9=(m-1)^2+8>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có nghiệm với mọi $m$

Với $x_1,x_2$ là 2 nghiệm của pt. Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{2}\\ x_1x_2=\frac{m}{2}\end{matrix}\right.\)

\(A=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)

\(=\sqrt{\frac{(m+3)^2}{4}-2m}=\frac{1}{2}\sqrt{m^2-2m+9}\)

\(=\frac{1}{2}\sqrt{(m-1)^2+8}\geq \frac{1}{2}\sqrt{8}=\sqrt{2}\)

Vậy $A_{\min}=\sqrt{2}$. Giá trị này đạt tại $m=1$

NV
13 tháng 5 2021

\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)

Dấu "=" xảy ra khi \(x=0\)

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)