Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left|x-2013\right|+\left|2014-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2013\right|+\left|2014-x\right|\ge\left|x-2013+2014-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x\le2014\end{matrix}\right.\Rightarrow2013\le x\le2014.\)
Vậy \(MIN_A=1\) khi \(2013\le x\le2014.\)
Chúc bạn học tốt!
\(A=|x-2018|-|x-2019|\ge|x-2018-x-2019|=|-1|=1\)
\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)
Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)
Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003
\(B=5,5-\left|2x-5\right|\le5,5\)
Dấu ''='' xảy ra khi x = 5/2
Vậy GTLN của B bằng 5,5 tại x = 5/2
a) |x + 2015| > 0
\(\Rightarrow\) |x + 2015| + 7 > 7
\(\Rightarrow\) min A = 7 khi x = - 2015
b) |x - 201| > 0
\(\Rightarrow\) - |x - 201| < 0
\(\Rightarrow\) 15 - |x - 201| < 15
\(\Rightarrow\) max B = 15 khi x = 201
\(C=\dfrac{2004}{2003}-\left|x-\dfrac{3}{5}\right|< =\dfrac{2004}{2003}\)
Dấu '=' xảy ra khi x=3/5
\(D=-\dfrac{2003}{2002}-\left|2x-\dfrac{2000}{2001}\right|< =-\dfrac{2003}{2002}\)
Dấu '=' xảy ra khi x=1000/2001
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
a) vì là gtrị tuyệt đối => >=0
=> GTNN=0 khi x=-1/2
b) GTNN =1/9 <=> x=3/5
Bài giải
Ta có :
\(A=\left|2004-x\right|+\left|2003-x\right|=\left|2004-x\right|+\left|x-2003\right|\ge\left|2004-x+x-2003\right|=\left|1\right|=1\)
Dấu " = " xảy ra khi :
\(\left(2004-x\right)\left(x-2003\right)\ge0\)
TH1 : \(\hept{\begin{cases}2004-x\ge0\\x-2003\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le2004\\x\ge2003\end{cases}}\) \(\Rightarrow\text{ }2003\le x\le2004\)
TH2 : \(\hept{\begin{cases}2004-x< 0\\x-2003< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>2004\\x< 2003\end{cases}}\)( Loại )
\(\Rightarrow\text{ Min A }=1\text{ khi }2003\le x\le2004\)