Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
gọi ý:
a,b biến đổi làm sao để:
a) áp dụng: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
b) áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
c) Đánh giá: \(\left|x-2015\right|^{2015}\ge0\)
\(\left(y-2016\right)^{2016}\ge0\)
=> \(C\ge1\)khi \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)
a ) A = | x - 5 | - | x - 7 |
Nhận xét :
| x - 5 | - | x - 7 | < | x - 5 - x + 7 |
=> A < | 2 |
=> A < 2
Dấu "=" xảy ra khi : ( x - 5 ) ( x - 7 ) > 0
TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)
=> \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)
=> x > 7
TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)
=> x < 5
Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7
b ) B = | 125 - x | + | x - 65 |
Ta có :
| 125 - x | + | x - 65 | > | 125 - x + x - 65 |
=> B > | 60 |
=> B > 60
Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0
TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)
=> 65 < x < 125
TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)
=> 125 < x < 65 ( vô lí )
Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125
c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1
Nhận xét :
| x - 2015 |2015 > 0 với mọi x
( y - 2016 )2016 > 0 với mọi x
=> | x - 2015 |2015 + ( y - 2016 )2016 > 0
=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1
=> C > 1
Dấu "=" xảy ra khi : x - 2015 = 0
và y - 2016 = 0
=> x = 2015
y = 2016
Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016
a) \(A=\left(2x-3\right)^2-\frac{1}{2}\)
Vì: \(\left(2x-3\right)^2\ge0\)
=> \(\left(2x-3\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Vậy GTNN của A là \(-\frac{1}{2}\) khi \(x=\frac{3}{2}\)
b) \(B=\frac{1}{2}-\left|2-3x\right|\)
Vì: \(\left|2-3x\right|\ge0\)
=> \(-\left|2-3x\right|\le0\)
=> \(\frac{1}{2}-\left|2-3x\right|\le\frac{1}{2}\)
Vậy GTLN của B là \(\frac{1}{2}\)
a) \(A=\left|x-1\right|+2018\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
a) A = \(\left|x-\frac{1}{2}\right|+30\ge0+30=30\)
=> GTNN của A = 30 khi x - 1/2 = 0 => x = 1/2
b) B = \(40-\left|12+x\right|\) \(\le\) 40 - 0 = 40 (Vì \(\left|12+x\right|\ge0\) với mọi x)
=> GTLN của B = 40 khi 12 + x = 0 => x = -12
\(A=\left|2x-1\right|+3\ge3\)
Dấu '=' xảy ra khi x=1/2
\(B=x^2+\left|3y+5\right|+2\ge2\)
Dấu '=' xảy ra khi x=0 và y=-5/3
\(C=-\left(x+1\right)^2+2017\le2017\)
Dấu '=' xảy ra khi x=-1
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
ta có :
| 2015 + x|\(\ge\)0
=> -|2015+x|\(\le\)0
=>A=2014-|2015+x|\(\le\)2014
Dấu "=" xảy ra khi:
2015+x=0
=>x=-2015
Vậy GTLN của A là 2014 tại x=-2015
l2015 + xl >=0 với mọi x
- l 2015 +x l <=0 với mọi x
2014 - l2015+ x l <= 2014 với mọi x
VẬy GTLN của A là 2014 khi x + 2015 = 0 => x = -2015