K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

a, \(x^2+y^2-2x+6y-30\)

\(=x^2-2x+1+y^2+6y+9-40\)

\(=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\)

\(min=-40\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

27 tháng 8 2021

a)x^2+y^2-2x+6y-30=(x-1)^2+(y+3)^2-40\(\ge\) -40

dấu = xảy ra khi x=1,y=-3

25 tháng 7 2018

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

25 tháng 7 2018

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

30 tháng 10 2019

a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Max của 3x - x2 = 9/4 <=> x = 3/2

b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=>  x - 3 = 0 <=> x = 3

Vậy Min của x2 - 6x + 18 = 9 <=> x = 3

30 tháng 10 2019

c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x

Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2

Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2

d) Ta có : x2 + y2 - 2x + 6y + 2019

= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009

= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y=  -3

1 tháng 8 2019

\(A=x^2-12x+7=x^2-12x+36-29\)

\(=\left(x-6\right)^2-29\ge-29\)

Vậy \(A_{min}=-29\Leftrightarrow x=6\)

1 tháng 8 2019

\(C=x-x^2-4=-\left(x^2-x+4\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)

16 tháng 8 2018

\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)

\(2D\ge10\) => D>=5 khi x=2y=6

\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)

F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6

\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)

\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)

E>=1998 khi 2x=y=2

bài 4;

\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)

\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)

khi x=1/6

bài 5:

\(a,\left(x+2\right)^2=0=>x=-2\)

\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)

c,\(x^2+2y^2-2xy-2x+2=0\)

\(x^2-4xy+4y^2+x^2-4x+4=0\)

\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)

đây nhá bạn, khá tốn time của mình huhu

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

a. $9x^2-16-(3x-4)(2x+5)=0$

$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$

$\Leftrightarrow (3x-4)(x-1)=0$

$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$

$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.

b.

$x^2+4x=12$

$\Leftrightarrow x^2+4x-12=0$

$\Leftrightarrow (x^2-2x)+(6x-12)=0$

$\Leftrightarrow x(x-2)+6(x-2)=0$

$\Leftrightarrow (x-2)(x+6)=0$

$\Leftrightarrow x-2=0$ hoặc $x+6=0$

$\Leftrightarrow x=2$ hoặc $x=-6$

c.

$x^2-2x=35$

$\Leftrightarrow x^2-2x-35=0$

$\Leftrightarrow (x^2+5x)-(7x+35)=0$

$\Leftrightarrow x(x+5)-7(x+5)=0$

$\Leftrightarrow (x+5)(x-7)=0$

$\Leftrightarrow x+5=0$ hoặc $x-7=0$

$\Leftrightarrow x=-5$ hoặc $x=7$

25 tháng 11 2023

cảm ơn bạn nhìu nha vui