Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
\(A=x^2-12x+7=x^2-12x+36-29\)
\(=\left(x-6\right)^2-29\ge-29\)
Vậy \(A_{min}=-29\Leftrightarrow x=6\)
\(C=x-x^2-4=-\left(x^2-x+4\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)
\(2D\ge10\) => D>=5 khi x=2y=6
\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)
F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6
\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)
\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)
E>=1998 khi 2x=y=2
bài 4;
\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
khi x=1/6
bài 5:
\(a,\left(x+2\right)^2=0=>x=-2\)
\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)
c,\(x^2+2y^2-2xy-2x+2=0\)
\(x^2-4xy+4y^2+x^2-4x+4=0\)
\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)
đây nhá bạn, khá tốn time của mình
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
Lời giải:
a. $9x^2-16-(3x-4)(2x+5)=0$
$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$
$\Leftrightarrow (3x-4)(x-1)=0$
$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$
$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.
b.
$x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2-2x)+(6x-12)=0$
$\Leftrightarrow x(x-2)+6(x-2)=0$
$\Leftrightarrow (x-2)(x+6)=0$
$\Leftrightarrow x-2=0$ hoặc $x+6=0$
$\Leftrightarrow x=2$ hoặc $x=-6$
c.
$x^2-2x=35$
$\Leftrightarrow x^2-2x-35=0$
$\Leftrightarrow (x^2+5x)-(7x+35)=0$
$\Leftrightarrow x(x+5)-7(x+5)=0$
$\Leftrightarrow (x+5)(x-7)=0$
$\Leftrightarrow x+5=0$ hoặc $x-7=0$
$\Leftrightarrow x=-5$ hoặc $x=7$
a, \(x^2+y^2-2x+6y-30\)
\(=x^2-2x+1+y^2+6y+9-40\)
\(=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\)
\(min=-40\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
a)x^2+y^2-2x+6y-30=(x-1)^2+(y+3)^2-40\(\ge\) -40
dấu = xảy ra khi x=1,y=-3