\(\sqrt{x-2}\)+ \(\sqrt{4-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

ĐK: \(2\le x\le4\)

Tìm max:

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Đẳng thức xảy ra khi a = b

Áp dụng vào \(\sqrt{x-2}+\sqrt{4-x}\le\sqrt{2\left(x-2+4-x\right)}=2\)

Tìm min: Áp dụng BĐT sau \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)(tự chứng minh)

Đẳng thức xảy ra khi a = 0 hoặc b = 0

\(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

Đẳng thức xảy ra khi x = 2 hoặc x = 4

14 tháng 7 2019

\(\text{Ta co BĐT: }\sqrt{a\: }+\sqrt{b}\le\sqrt{2\left(a+b\right)}\text{ thật vậy:}\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le2a+2b\left(vì:\sqrt{a}+\sqrt{b};\sqrt{2\left(a+b\right)}\ge0\right)\Leftrightarrow a+2\sqrt{ab}+b\le2a+2b\Leftrightarrow2\sqrt{ab}\le a+b\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\left(\text{luôn đung}\right)\Rightarrow\sqrt{x\: -2}+\sqrt{4-x\: }\le\sqrt{2\left(x\: -2+4-x\: \right)}=\sqrt{4}=2\Rightarrow A_{max\: }=2\)

\(Dâu "=" \text{ra }\Leftrightarrow x\: =3\)

\(\text{Đạt: A=}\sqrt{x\: -2}+\sqrt{4-x\: }\Rightarrow A^2=x\: -2+4-x+2\sqrt{\left(x-2\right)\left(4-x\: \right)}\: =2+2\sqrt{\left(x-2\right)\left(4-x\: \right)}\ge2+0=2\left(vì:2\sqrt{\left(x\: -2\right)\left(4-x\: \right)}\ge2.0=0\right)\Rightarrow A_{min}=\sqrt{2}\left(vì:A=\sqrt{x\: -2}+\sqrt{4-x\: }\ge0+0=0\right).\text{Dâu "=" xay ra }\)\(khi:x\: =2hoac:x\: =4\)

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

NV
13 tháng 11 2018

Tất cả 3 bài này đều chung một dạng, bậc tử lớn hơn bậc mẫu nên đều không tồn tại GTLN mà chỉ tồn tại GTNN. Cách tìm thường là chia tử cho mẫu rồi khéo léo thêm bớt để sử dụng BĐT Cô-si

a) \(P=\dfrac{x+4}{4\sqrt{x}}=\dfrac{\sqrt{x}}{4}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{4}\dfrac{1}{\sqrt{x}}}=2.\dfrac{1}{2}=1\)

\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}}{4}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=4\)

b) \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{2}+\dfrac{2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{2}+\dfrac{2}{\sqrt{x}+1}-1\)

\(\Rightarrow P\ge2\sqrt{\dfrac{\left(\sqrt{x}+1\right)}{2}\dfrac{2}{\left(\sqrt{x}+1\right)}}-1=2-1=1\)

\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}+1}{2}=\dfrac{2}{\sqrt{x}+1}\Leftrightarrow x=1\)

c)ĐKXĐ: \(x\ge0\Rightarrow\) \(P=\dfrac{x-4}{\sqrt{x}+1}=\sqrt{x}-1-\dfrac{3}{\sqrt{x}+1}\)

\(P_{min}\) khi \(\dfrac{3}{\sqrt{x}+1}\) đạt max \(\Rightarrow\sqrt{x}+1\) đạt min, mà \(\sqrt{x}+1\ge1\) \(\forall x\ge0\) , dấu "=" xảy ra khi \(x=0\)

\(\Rightarrow P_{min}=-4\) khi \(x=0\)

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

19 tháng 6 2017

a/ Căn xác định với \(2\le x< 3\) ta có \(\frac{\left(x-2\right)^2}{3-x}+\frac{x^2+1}{x-3}=0\)

<=> \(\frac{\left(x-2\right)^2}{3-x}-\frac{x^2+1}{3-x}=0\)<=> \(^{x^2-4x+4-x^2-1=0}\)<=> x = 3/4 ( Không TM ) Vậy PTVN 

19 tháng 6 2017

Bài 2:

*)GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(A=\sqrt{x+3}+\sqrt{5-x}\)

\(\ge\sqrt{x+3+5-x}=\sqrt{8}\)

Đẳng thức xảy ra khi \(-3\le x\le5\)

*)GTLN:Áp dụng BĐT Cauchy-Schwarz ta có:

\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2\)

\(\le\left(1+1\right)\left(x+3+5-x\right)\)

\(=2\cdot8=16\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Đẳng thức xảy ra khi \(x=1\)