K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Tử \(x^4+2x^3+8x+16\)

\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)

\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)

Mẫu \(x^4-2x^3+8x^2-8x+16\)

\(=x^4-2x^3+4x^2+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)

Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)

Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy Min=0 khi x=-2

 

8 tháng 12 2016

616 là 16 nha các p

8 tháng 12 2016

bằng -2

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(