K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

giá trị nhỏ nhất của p=0 vì giá trị tuyệt đối của bất kì số nào cũng lớn hơn hoặc bằng 0

23 tháng 3 2017

giá trị truyệt đối của p=0

26 tháng 12 2016

giá trị nhỏ nhất là 0

vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0

dấu bằng xảy ra khi

x - 2013 = 0

x-2014=0

x-2015=0

vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức

28 tháng 12 2016

Gọi biểu thức trên là A

Ta thấy 

A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:

/x-2013+2014-x/=/1/=1

Min A=1

31 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{MIN}=2\)

31 tháng 3 2017

Hình như bn làm sai rui Ace Legona ạ!!!!

10 tháng 12 2018

có \(P=|2013-x|+|2014-x|\)

          =\(|2013-x|+|x-2014|\)

\(\Rightarrow P\ge|2013-x+x-2014|=|-1|=1\)

\(\Rightarrow MinP=1\Leftrightarrow Dấu=xảyra\)\(\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)

\(\Leftrightarrow2013\le x\le2014\)

                                        kb với mk nha!!!!!!!!    ^_^   ^_^

10 tháng 12 2018

\(P=\left|2013-x\right|+\left|2014-x\right|\)

\(P=\left|x-2013\right|+\left|2014-x\right|\)

Ta có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\\\left|2014-x\right|\ge2014-x\end{cases}}\Rightarrow P\ge x-2013+2014-x=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-2013\right|=x-2013\\\left|2014-x\right|=2014-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2013\ge0\\2014-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}\Leftrightarrow}2013\le x\le2014}\)

Vậy \(P_{min}=1\Leftrightarrow2013\le x\le2014\)

23 tháng 12 2018

Tìm GTNN của biểu thức:

P=|2013x|+|2014x|

P=|x-2013|+|2014−x|

ÁP DỤNG: |A|+|B| >=|A+B|

=> |x-2013|+|2014−x|>=|x-2013+2014-x|

=> |x-2013|+|2014−x|>=1

Vậy P >= 1

Tự xét dấu = xảy ra

Vậy P min =1

24 tháng 12 2018

Ta có: \(P=|2013-x|+|2014-x|=|2013-x|+|x-2014|\ge|2013-x+x-2014|=|-1|=1\)

\(\Rightarrow minP=1\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)

\(TH1:\hept{\begin{cases}2013-x\le0\\x-2014\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\Rightarrow2013\le x\le2014\)

\(TH2:\hept{\begin{cases}2013-x>0\\x-2014>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2013\\x>2014\end{cases}}\Rightarrow\)vô lý

Vậy \(minP=1\Leftrightarrow2013\le x\le2014\)

( min là GTNN )

27 tháng 4 2016

Giá trị nhỏ nhất của A là: A=2 

27 tháng 4 2016

x \(\in\){2014;2015;2016}

29 tháng 11 2015

GTNN của

+,G=3/2

+,H=-2015

+,K=5

29 tháng 12 2017

Ta có:

|12-x|=-|x-12|

Đ k: x-12>_0=>x>_12

=>2014.|x-12|+(x-12)^2=-2013.|x-12|

=>2014.(x-12)+(x-12)^2+2013.(x-12)=0

=>(x-12).(2014+x-12+2013)=0

=>(x-12).(x+2005)=0

=>x-12=0 và. x+2005=0

=>x=12 và x=-2005

19 tháng 12 2017

\(2013\left|x+2015\right|+\left(x+2015\right)^2=2014\left|x+2015\right|\)

\(\Rightarrow2013\left|x+2015\right|+\left|x+2015\right|^2=2014\left|x+2015\right|\)

Đặt: \(\left|x+2015\right|=l\ge0\) khi đó phương trình trở thành:

\(2013l+l^2=2014l\)

\(\Rightarrow l^2=l\Leftrightarrow l^2=l=0\)

\(\Rightarrow l\left(l-1\right)=0\Rightarrow\left[{}\begin{matrix}l=0\\l=1\end{matrix}\right.\)

Với \(l=0\) ta có: \(\left|x+2015\right|=0\Leftrightarrow x=-2015\)

Với \(l=1\) ta có: \(\left|x+2015\right|=1\Leftrightarrow\left[{}\begin{matrix}x+2015=1\\x+2015=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2014\\x=-2016\end{matrix}\right.\)