\(\frac{x\left(x-6\right)+74}{13}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

\(A=\frac{x\left(x-6\right)+74}{13}=\frac{x^2-6x+74}{13}=\frac{\left(x^2-6x+9\right)+65}{13}=\frac{\left(x-3\right)^2}{13}+\frac{65}{13}\ge\frac{65}{13}\)

Dấu "=" xảy ra tại \(x=3\)

29 tháng 12 2019

\(A=\frac{x\left(x-6\right)+74}{13}=\frac{x^2-6x+9+65}{13}=\frac{\left(x-3\right)^2+65}{13}=\frac{\left(x-3\right)^2}{13}+5\)

Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\frac{\left(x-3\right)^2}{13}\ge0\)\(\Rightarrow A\ge5\)

Dấu bằng xảy ra khi \(x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(minA=5\Leftrightarrow x=3\)

28 tháng 10 2019

A = x( 6 - x ) + 74 + x

A = 6x - x+ 74 + x

A = - x+ 7x + 74

A = - ( x- 7x - 74 )

A = - [ x- 2 . 7 / 2 + ( 7 / 2 )- ( 7 / 2 )- 74 ]

A = - ( x - 7 / 2 )- 345 / 2 \(\le\)- 345 / 2

Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0

                       \(\Rightarrow\)x              = 7 / 2

Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2

28 tháng 10 2019

\(x\left(x-6\right)+74+x\)

\(=x^2-6x+74+x\)

\(=x^2-5x+74\)

\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)

Dấu '' = '' xảy ra 

\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy..................

P/s : chưa kt lại bài nên sai bỏ qua

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

24 tháng 11 2018

Ta có :  

\(P=\frac{\left(x+\frac{1}{x}^6\right)-\left(x^6+\frac{1}{x}^6\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)

\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x}^3\right)\)

\(=3\left(x+\frac{1}{x}\right)\ge6\left(x>0\right)\)

\(\Rightarrow Pmin=6\Leftrightarrow x=1\)

20 tháng 3 2020

\( a)\dfrac{{x - 3}}{5} = 6 - \dfrac{{1 - 2x}}{2}\\ \Leftrightarrow 2\left( {x - 3} \right) = 60 - 5\left( {1 - 2x} \right)\\ \Leftrightarrow 2x - 6 = 60 - 5 + 10x\\ \Leftrightarrow 8x = - 61\\ \Leftrightarrow x = - \dfrac{{61}}{8}\\ b)\dfrac{{3x - 2}}{6} - 5 = \dfrac{{3 - 2\left( {x + 7} \right)}}{4}\\ \Leftrightarrow 2\left( {3x - 2} \right) - 60 = 3\left( { - 11 - 2x} \right)\\ \Leftrightarrow 6x - 4 - 60 = - 33 - 6x\\ \Leftrightarrow 12x = 31\\ \Leftrightarrow x = \dfrac{{31}}{{12}} \)

20 tháng 3 2020

\(a.\frac{x-3}{5}=6-\frac{1-2x}{2}\\\Leftrightarrow \frac{2\left(x-3\right)}{10}=\frac{60}{10}-\frac{5\left(1-2x\right)}{10}\\ \Leftrightarrow2\left(x-3\right)=60-5\left(1-2x\right)\\\Leftrightarrow 2x-6=60-5+10x\\\Leftrightarrow 2x-10x=6+60-5\\\Leftrightarrow -8x=61\\ \Leftrightarrow x=-\frac{61}{8}\)

Vậy nghiệm của phương trình trên là \(-\frac{61}{8}\)

16 tháng 2 2017

câu1: tự làm nhé

câu 2: đặt x+7=t

\(\Leftrightarrow\left(t+1\right)^4+\left(t-1\right)^4=\left(t+1\right)^4+\left(1-t\right)^4=a^4+b^4\)

Bài toán trở thành Tìm GTNN (a^4+b^4) với đk a+b=2

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{2}=\frac{\left[\frac{\left(2\right)^2}{2}\right]^2}{2}=\frac{4}{2}=2\)

Đẳng thức khi a=b=> t=0=>x=-7

Bạn có thể nhân ra phân tích thành tổng bp nhưng rất dài

12 tháng 12 2018

\(A=\frac{8x^2-24x+32}{8\left(x-1\right)^2}=\frac{x^2-10x+25+7\left(x-1\right)^2}{8\left(x-1\right)^2}=\frac{\left(x-5\right)^2}{8\left(x-1\right)^2}+\frac{7}{8}\ge\frac{7}{8}\forall x\)

Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)

Vậy GTNN của A là \(\frac{7}{8}\) khi x = 5

12 tháng 12 2018

la 4 nha ban