K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(A=\frac{2}{6x-5-9x^2}=\frac{2}{\left(-9x^2+6x-1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\)

Ta thấy :

\(-\left(3x-1\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(3x-1\right)^2-4\le-4\forall x\)

\(\Leftrightarrow A=\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}=-\frac{1}{2}\forall x\) có GTNN là \(-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

Vậy \(A_{min}=-\frac{1}{2}\) tại \(x=\frac{1}{3}\)

4 tháng 8 2017

Để A nhỏ nhất thì 6x-5-9x2 nhỏ nhất

=>6x-5-9x2 =1=>Min A =2/1=2

10 tháng 10 2015

A = 2

B = -5

C = 8 

chắc là z ! 

21 tháng 7 2018

B1 Xét (7x+1)\(^2\)-(x+7)\(^2\)-48(x\(^2\)-1)

=49\(x^2\)+14x+1-x\(^2\)-14x-49-48x\(^2\)+48

=0

Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)

B2 \(16x^2-\left(4x-5\right)^2=15\)

(4x)\(^2\)-(4x-5)\(^2\)-15=0

(4x-4x+5)(4x+4x-5)-15=09x-5)=0

5(8x-5)-15=0

40x-25-15=0

40x-40=0

x        =1

câu B3 mình không bik làm 

chúc bạn học tốt ~~~

21 tháng 7 2018

Bài 3:

\(A=x^2+2x+3\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy  MIN  \(A=2\)   khi    \(x=-1\)

p/s: chúc bạn học tốt

2 tháng 7 2019

Ta có: A=\(\frac{-2}{9x^2-6x+1+4}\) =\(\frac{-2}{\left(3x-1\right)^2+4}\)\(\ge\)\(\frac{-2}{4}\)=\(\frac{-1}{2}\)

Vậy giá trị nhỏ nhất của A là \(\frac{-1}{2}\)khi x=\(\frac{1}{3}\)

2 tháng 7 2019

\(A=\frac{2}{6x-5-9x^2}\)

\(A=\frac{2}{-9x^2+6x-1-4}\)

\(A=\frac{2}{-\left(9x^2-6x+1\right)-4}\)

\(A=\frac{2}{-\left(3x-1\right)^2-4}\)

Vì \(-\left(3x-1\right)^2\le0\)

\(\Rightarrow-\left(3x-1\right)^2-4\le-4\)

\(\Rightarrow\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

Vậy \(GTNN_A=\frac{-1}{2}\)tại \(x=\frac{1}{3}\)

\(B=2x^2-6x+7\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)

\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)

\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)

\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)

\(=\left(2x-5-2\right)^2-4\)

\(=\left(2x-7\right)^2-4\ge-4\)

Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)

21 tháng 8 2021

(2x-5)^2 -4(2x-5)=(2x-5)^2 -4(2x-5)+4-4=(2x-7)^2 -4>=-4 suy ra C đạt gtnn là -4

4 tháng 11 2019

\(A=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow A=\frac{-2}{9x^2-6x+5}\)

\(\Leftrightarrow A=\frac{-2}{\left(3x-1\right)^2+4}\)

Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\)

\(\Rightarrow\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

\(MinA=\frac{-1}{2}\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

4 tháng 11 2019

Ta có: A = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=> \(3x-1=0\) <=> \(x=\frac{1}{3}\)

Vậy MinA = -1/2 <=> x=  1/3

7 tháng 9 2015

 

\(A=\left(2x\right)^2+2.2x.\frac{1}{4}+\frac{1}{16}+\frac{1}{16}=\left(2x+\frac{1}{4}\right)^2+\frac{1}{16}\ge\frac{1}{16}\)

=> GTNN(A)=\(\frac{1}{16}\)

\(B=9x^2+2.3x.1+1+14=\left(3x+1\right)^2+14\ge14\)

=> GTNN(B)=14

5 tháng 6 2016

-1/2

5 tháng 6 2016

Nhân A với mẫu rồi viết theo phương trình bậc 2 ẩn x, tham số A tình den ta là được

 

14 tháng 7 2016

\(M=4x^2-4x+1+4=\left(2x-1\right)^2+4\)

vì (2x-1)^2 >= 0 => M >= 4

dầu "=" xảy ra <=> 2x-1=0<=>x=1/2

tương tự nhé

2. b B=4(x^2+3/4x+5/4)

14 tháng 7 2016

Bài 1:

a)M= 4x2-4x + 5

=4x2-4x+1+4

=(2x-1)2+4

Ta thấy:(2x-1)2+4\(\ge\)0+4=4

Dấu = khi x=1/2

Vậy.....

b)N= 9x2 + 5x

\(=9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\)

Ta thấy:\(9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\ge0-\frac{25}{36}=-\frac{25}{36}\)

Dấu = khi x=-5/18

Vậy...

Bài 2:

a)A= x2-6x + 12

=x2-6x+9+3

=(x-3)2+3 >0 với mọi x (Đpcm)

b)B= 4x2 -3x +5

\(=4\left(x-\frac{3}{8}\right)^2+\frac{71}{16}>0\)với mọi x (Đpcm)