K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

hình như kết quả \(\frac{9}{6}\)hay j ák

30 tháng 9 2019

\(A=\left(x+2\right)^2+\left(x-1\right)^2=\left(x+2\right)^2+\left(1-x\right)^2\)

Có BĐT phụ:

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)

Khi đó:\(A\ge\frac{\left(x+2+1-x\right)^2}{2}=\frac{9}{2}\)

Dấu"=" xảy ra khi \(x=\frac{-1}{2}\)

25 tháng 6 2021

`(x^4-1)^2+(x^2+1)^2`

`=x^8-2x^4+1+x^4+2x^2+1`

`=x^8-x^4+2x^2+2`

25 tháng 6 2021

\(\left(x^4-1\right)^2+\left(x^2+1\right)^2=\left(x^2-1\right)^2.\left(x^2+1\right)^2+\left(x^2+1\right)^2\)

\(=\left(x^2+1\right)^2\left[\left(x^2-1\right)^2+1\right]=\left(x^2+1\right)^2\left(x^4-2x^2+2\right)\)

b: \(B\ge2021\forall x,y\)

Dấu '=' xảy ra khi x=y=3

a) Ta có: \(A=x^2-5x+7\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

b) Ta có: \(B=2x^2-8x+15\)

\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu '=' xảy ra khi x=2

19 tháng 7 2021

a. `A=x^2-5x+7`

`=x^2-2.x. 5/2 + (5/2)^2 +3/4`

`=(x-5/2)^2 + 3/4`

`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`

b) `B=2x^2-8x+15`

`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`

`=(\sqrt2x-2\sqrt2)^2+7`

`=> B_(min)=7 <=> x=2`.

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

Bạn xem lại đề câu d nhé.

5 tháng 8 2021

D=x^2+5y^2-4xy-6x+8y+12

 
14 tháng 10 2017

(x-1)(x+2)(x+3)(x+6) 
= [(x-1)(x+6)].[(x+2)(x+3)] 
=(x^2+5x-6)(x^2+5x+6) 
=(x^2+5x)^2 -6^2 = (x^2+5x)^2 -36 
vì (x^2+5x)^2 > hoặc bằng 0 => (x-1)(x+2)(x+3)(x+6) > hoặc bằng -36. 
Dấu bằng xảy ra khi (x^2+5x)^2=0 <=> x=0 hoặc x= -5