Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(\hept{\begin{cases}-2\le x\le6\\-1\le x\le3\end{cases}}\Leftrightarrow-1\le x\le3\)
Thử bằng máy tính với \(x=-1;0;1;2;3\) thì thấy \(x=0\) thì A có giá trị nhỏ nhất so với các giá trị còn lại.
Từ đó ta có thể thử:
Chứng minh \(A\ge A\left(3\right)\) hay \(A\ge\sqrt{3}\)
\(\Leftrightarrow\sqrt{-x^2+4x+12}\ge\sqrt{3}+\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow-x^2+4x+12\ge3-x^2+2x+3+2\sqrt{3}\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow x+3\ge\sqrt{3\left(-x^2+2x+3\right)}\)
\(\Leftrightarrow x^2+6x+9\ge-3x^2+6x+9\)(tương đương được vì \(x+3\ge-1+3>0\))
\(\Leftrightarrow4x^2\ge0\)
Do bđt cuối đúng nên bđt cần chứng minh là đúng.
Vậy Min A = 3 khi x = 0.
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
Ta có \(\frac{9+4x^2+4x^3+x^4}{x^2+2x}=\frac{x^2\left(x^2+2\right)+2x\left(x^2+2x\right)+9}{x^2+2x}\)
= x2 + 2x + \(\frac{9}{x^2+2x}\)
= (\(\frac{3}{\sqrt{x^2+2x}}-\sqrt{x^2+2x}\))2 + 6 \(\ge6\)
\(\frac{9+x^2\left(x^2+2x\right)+2x\left(x^2+2x\right)}{x^2+2x}\)
Nha a viết láu táu nên thiếu mất x