K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 6 2016
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
TA
1
4 tháng 9 2016
Đặt \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\)
Ta có bđt sau \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\) tự chứng mình nha
Áp dụng \(a=x,b=y,c=1\)
Ta có : \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\)
Ta có : \(A=\frac{1}{B}+B=\frac{1}{B}+\frac{B}{9}+\frac{8B}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra khi \(x=y=1\)
NC
6 tháng 4 2017
đat a=......
nhan ca 2 ve cua a voi 2 ta dc 2a=
ban tach ra de dc hang dang thuc roi ket luan
\(A=x^2+y^2-xy-x+y+1\)
\(12A=12x^2+12y^2-12xy-12x+12y+12\)
\(=3\left(x^2+2xy+y^2\right)+9x^2+9y^2+4-18xy-12x+12y+8\)
\(=3\left(x+y\right)^2+\left(3x-3y-2\right)^2+8\ge8\)
Dấu \(=\)khi \(\hept{\begin{cases}x+y=0\\3x-3y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)
Vậy \(minA=\frac{2}{3}\).