\(\left|x-2018\right|+2019\)

R=\(\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

1) Vì \(\left|x-2018\right|\) \(\ge\) \(\forall\) x \(\in\) Z
=> \(\left|x-2018\right|+2019\) \(\ge\) 2019
Vậy để biểu thức đạt GTNN \(\Leftrightarrow\)\(\left|x-2018\right|\) = 0
=> x - 2018 = 0
=> x = 0 + 2018
=> x = 2018
Thay x vào biểu thức, ta có:
\(\left|2018-2018\right|\) + 2019
= 0 + 2019
= 2019

18 tháng 11 2022

R=|2x-4|+|2x+5|+1

=|4-2x|+|2x+5|+1

=>R>=|4-2x+2x+5|+1=10

Dấu = xảy ra khi (2x-4)(2x+5)<=0

=>-5/2<=x<=2

c: Q=|x+1/3|+|2/3-x|>=|x+1/3+2/3-x|=1

Dấu = xảy ra khi (x+1/3)(x-2/3)<=0

=>-1/3<=x<=2/3

a: TH1: x>=0

=>x+x=1/3

=>x=1/6(nhận)

TH2: x<0

Pt sẽ là -x+x=1/3

=>0=1/3(loại)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)

\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)

\(\Leftrightarrow3x^2-63x+60=4x+72\)

=>3x^2-67x-12=0

hay \(x\in\left\{22.51;-0.18\right\}\)

3 tháng 8 2017

a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)

\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)

\(x=\dfrac{-7}{10}\)

b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)

\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)

\(x+\dfrac{5}{6}=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}-\dfrac{5}{6}\)

\(x=\dfrac{7}{30}\)

c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)

\(\dfrac{7}{5}x=\dfrac{-43}{35}\)

\(\Rightarrow x=\dfrac{-43}{49}\)

d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)

\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)

\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}-\dfrac{3}{4}\)

\(x=\dfrac{-5}{12}\)

e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)

\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)

\(x+\dfrac{4}{5}=2,15-3,75\)

\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)

\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)

\(x=\dfrac{-12}{5}\)

f) \(\left(x-2\right)^2=1\)

\(\Rightarrow x=1\)

Sức chịu đựng có giới hạn -.-

3 tháng 8 2017

- Mình tiếp tục cho Nguyễn Phương Trâm nhé.

g, \(\left(2x-1\right)^3=-27\)

\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)

\(\Rightarrow2x-1=-3\)

\(\Rightarrow2x=-2\)

=> \(x=-1\)

- Vậy x = -1

h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)

\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)

\(\Rightarrow\left(x-1\right)^2=900 \)

\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)

=> x = 31

i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)

=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{16}\)

- Vậy x=\(\dfrac{1}{16}\)

j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)

\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{3}{4}\)

- Vạy x = \(\dfrac{3}{4}\)

k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)

=>\(4^x=4\)

=> x = 1

- Vậy x = 1

22 tháng 12 2017

a)

\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)

b)

\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 1 2018

tiếp đi bạn

1) Tính \(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\) \(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\) 2) Tìm x biết: a) \(x^2-2x-15=0\) b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\) 3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng...
Đọc tiếp

1) Tính

\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)

\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)

2) Tìm x biết:

a) \(x^2-2x-15=0\)

b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)

3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1

5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)

Chứng minh: BC > MN

6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C

2
21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô

Bài 1: 

a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)

=>2 căn x=6

=>căn x=3

=>x=9

b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)

=>x=1

\(\Leftrightarrow\dfrac{2}{x-3}-\dfrac{2}{x-2}+\dfrac{1}{x-8}-\dfrac{1}{x-3}+\dfrac{1}{x-20}-\dfrac{1}{x-8}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{2}{x-2}=\dfrac{-3}{4}\)

\(\Leftrightarrow4\left(x-2\right)-8\left(x-3\right)=-3\left(x-3\right)\left(x-2\right)\)

\(\Leftrightarrow4x-8-8x+24+3\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow3x^2-15x+18-4x+16=0\)

\(\Leftrightarrow3x^2-19x+34=0\)

\(\text{Δ}=\left(-19\right)^2-4\cdot3\cdot34=-47< 0\)

Do đó: Phương trình vô nghiệm

1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)

=>4x=18

hay x=9/2

2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)

=>4x=108

hay x=27

3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)

\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)

=>4x=12

hay x=3