\(P=\dfrac{ab}{a^2+b^2}+\dfrac{a^2+b^2}{ab}\) với a,b>0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

\(A=\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\\ =\dfrac{2}{a^2+b^2}+\dfrac{2}{2ab}+\dfrac{34}{ab}+\dfrac{17ab}{8}-\dfrac{ab}{8}\\ =2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+17\left(\dfrac{2}{ab}+\dfrac{ab}{8}\right)-\dfrac{ab}{8}\\ \overset{AM-GM}{\ge}2\cdot\dfrac{1}{a^2+b^2+2ab}+17\sqrt{\dfrac{2}{ab}\cdot\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{2}{\left(a+b\right)^2}+\dfrac{17}{2}-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{2}{4^2}+\dfrac{17}{2}-\dfrac{4^2}{32}=\dfrac{65}{8}\)

Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}\dfrac{2}{ab}=\dfrac{ab}{8}\\a^2+b^2=2ab\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)

Vậy \(A_{Min}=\dfrac{65}{8}\) khi \(a=b=2\)

11 tháng 12 2018

Không có vÄn bản thay thế tá»± Äá»ng nà o.\(\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+17\cdot2\sqrt{\dfrac{2}{ab}+\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{8}{\left(a+b\right)^2}+17-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{8}{4^2}+17-\dfrac{4^2}{32}=17\)

Không có vÄn bản thay thế tá»± Äá»ng nà o.Vậy \(A_{Min}=17\) khi \(a=b=c=2\)

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

Ta có:

\((a+b)^2 \leq 16 \Rightarrow a^2+b^2 \leq 16-2ab \)

\((a+b)^2 \geq 4ab \Rightarrow ab \leq 4 \)

Suy ra \(P\ge\dfrac{1}{8-ab}+\dfrac{35}{ab}+2ab\)

\(=\dfrac{1}{8-ab}+\dfrac{8-ab}{16}+\dfrac{33ab}{16}+\dfrac{33}{ab}+2ab-\dfrac{1}{2}\)

\(\ge\dfrac{2\cdot1}{4}+\dfrac{2\cdot33}{4}+\dfrac{2}{4}-\dfrac{1}{2}=17\)

Dấu "=" xảy ra khi \(a=b=2\)

1 tháng 6 2017

ta có

\(\left(a+b\right)^2\ge4ab\Rightarrow ab\le4\)\(P=2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(\dfrac{32}{ab}+2ab\right)+\dfrac{2}{ab}\ge2\dfrac{4}{\left(a+b\right)^2}+2\sqrt{\dfrac{32}{ab}.2ab}+\dfrac{2}{4}=\dfrac{8}{16}+2.8+\dfrac{1}{2}=17.\)

P min=17 khi a=b=2

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

5 tháng 7 2018

Bài 1:

Ta có: \(M=4x^2-3x+\dfrac{1}{4x}+2011=4x^2-4x+1+x+\dfrac{1}{4x}+2010\)

\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)

\(=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có:

\(x+\dfrac{1}{4x}\ge2\sqrt{x.\dfrac{1}{4x}}=2\sqrt{\dfrac{1}{4}}=1\)

Suy ra: \(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)

Vậy: \(Min_M=2011\Leftrightarrow x=\dfrac{1}{2}\)

Bài 2: Tham khảo: với hai số thực không âm a, b thỏa a2 + b2 = 4, tìm giá trị lớn nhất của biểu thức M= ab /(a+b+2) | Câu hỏi ôn tập thi vào lớp 10

6 tháng 1 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(VT=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)

\(=\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)

\(=\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ac+ab+bc+ac+a^2+b^2+c^2}+\dfrac{7}{ab+bc+ac}\)

\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}\)

Áp dụng bất đẳng thức AM-GM cho 2 số dương:

\(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)

Ta có: \(\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)