Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2mx+m-7=0\)
Ta có: \(\Delta'=m^2-m+7>0\)
\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt
Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)
\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)
Theo đề bài ta có:
\(P=|x_1-x_2|\)
\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)
\(\Rightarrow P\ge3\sqrt{3}\)
Dấu = xảy ra khi \(m=\frac{1}{2}\)
x2 - 2mx + m - 7 = 0
(a= 1; b=-2m; c=m-7)
<=> \(\Delta\)= b2-4ac
\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)
\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28
= 4m2-4m+28 >= 0
vậy pt có 2 ng với mọi m
Theo đl vi-et, t/c:
s=x1+x2=\(\frac{-b}{a}\)=-2m
p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7
x1 + x2 + x1 \(\times\)x2
= S + P
= -2m + m+7
= -m +7
min A = 0 khi
-m+7=0
\(\Rightarrow\)m=7
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(M=A\cdot B=\dfrac{x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
=>\(M=\dfrac{x}{\sqrt{x}+2}\)
=>\(M=\dfrac{x-4+4}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{4}{\sqrt{x}+2}\)
=>\(M=\sqrt{x}+2+\dfrac{4}{\sqrt{x}+2}-4\)
=>\(M>=2\cdot\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{4}{\sqrt{x}+2}}-4=0\)
Dấu '=' xảy ra khi \(\sqrt{x}+2=\sqrt{4}=2\)
=>\(\sqrt{x}=0\)
=>x=0(nhận)
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có
\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)
Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)
Vậy GTNN của M = 10 <=> x = 4
\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)
Áp dụng bđt cô-si ta có:
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)
hay \(M\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
Vậy GTNN của M = 10 khi x = 4
Xét \(\Delta=\left(m^2+m+1\right)^2+4\left(m^2-m+1\right)>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m^2+m+1}{m^2-m+1}\\x_1x_2=\frac{-1}{m^2-m+1}\end{cases}}\)
a, \(P=\frac{-1}{m^2-m+1}=\frac{-1}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{-1}{\frac{3}{4}}=\frac{-4}{3}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\)
b,Tìm GTNN : lấy S trừ 2
a: \(M-\dfrac{3}{2}=\dfrac{x+7}{\sqrt{x}+3}-\dfrac{3}{2}\)
\(=\dfrac{2x+14-3\sqrt{x}-9}{2\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-3\sqrt{x}+5}{2\left(\sqrt{x}+3\right)}>0\)
=>M>3/2
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
\(=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\cdot\sqrt{\dfrac{16}{\sqrt{x}+3}\cdot\left(\sqrt{x}+3\right)}-6=2\cdot4-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1