K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
QK
0
QN
1
G
1
QH
22 tháng 8 2015
x^2+y^2=xy => xy >= 0
x^2 + y^2 = xy <=> (x-y)^2 = -xy => -xy >= 0 <=> xy <= 0
=> xy = 0 => x^2+y^2 = 0 <=> x=y=0
F luôn bằng 0 => Max = min = 0
CT
0
L
1
31 tháng 1 2017
Đặt x + y = t
=> A = t + 1
Ta có: x2+2xy+7(x+y)+2y2+10=0
<=> (x2 + 2xy + y2) + 7(x + y) + 10 + y2 = 0
<=> (x + y)2 + 7(x + y) + 10 = - y2
<=> t2 + 7t + 10 = - y2 \(\le\)0
<=> \(-5\le t\le-2\)
<=> \(-4\le t+1\le-1\)
<=> \(-4\le A\le-1\)
Vậy GTLN là A = - 1dấu bằng xảy ra khi x = - 2, y = 0; GTNN là A = - 4 dấu bằng xảy ra khi x = - 5, y = 0
- Với \(m=2\Rightarrow F=5\left(x+y-2\right)^2\ge0\)
\(F_{min}=0\) khi \(x+y=2\)
- Với \(m\ne2\)
\(\left\{{}\begin{matrix}\left(mx+2y-2m\right)^2\ge0\\\left(x+y-2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow F_{min}=0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}mx+2y=2m\\x+y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+2y=2m\\2x+2y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)x=2\left(m-2\right)\\y=2-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)