K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

\(P=3x^2-9x+17=3\left(x^2-3x+\frac{9}{4}\right)+10\frac{1}{4}\)

\(=3\left(x-\frac{3}{2}\right)^2+10\frac{1}{4}\ge10\frac{1}{4}\)

Dấu "=" xảy ra <=> \(x-\frac{3}{2}=0\) <=>    \(x=\frac{3}{2}\)

Vậy  MIN  \(P=10\frac{1}{4}\)khi  \(x=\frac{3}{2}\)

áp dụng CT này vô nha:

\(A=\text{ax}^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\left(a\ne0\right)\)

nếu a<0 thì \(A\le\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)

nếu a>0 thì \(A\ge\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)

công thức này được áp dụng dạng bài tìm GTLN và GTNN của tam thức bậc 2 nha

áp dụng câu đầu:

\(A=2x^2-8x-10\\ A=2\left(x+\dfrac{-8}{2.2}\right)^2+\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}\ge\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}=-18\)

đẳng thức xảy ra khi \(x=-\dfrac{-8}{2.2}=2\)

vậy MIN A=-18 tại x=2

không tin thì bạn thử lại bằng máy tính nha :))

28 tháng 6 2017

Mk sửa đề nhé : x2 + 3x + 3 

= x2 + 2x.\(\frac{3}{2}\) + \(\frac{9}{4}+\frac{3}{4}\)

\(\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\in R\)

=> \(\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\in R\)

Vậy giá trị nhỏ nhất của đa thức là : \(\frac{3}{4}\) khi x = \(\frac{3}{2}\)

28 tháng 6 2017

x+3x+3

(x2 +3.x.\(\frac{3}{2}\)+ (3/2)^2  +3 - (3/2)^2

(x+3/2 )^2  + 3/4

vì (x+3/2)^2 \(\ge0=>\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}=>\) amin 3/4 

23 tháng 10 2018

a/ \(A=x^2-4x+15\)

\(=x^2-4x+4+11\)

\(=\left(x-2\right)^2+11\)

Nhận xét : \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+11\ge11\)

\(\Leftrightarrow A\ge11\)

Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{Min}=11\Leftrightarrow x=2\)

b/ \(B=9x^2-3x+17\)

\(=9x^2-3x+\dfrac{1}{4}+\dfrac{67}{4}\)

\(=\left(3x-\dfrac{1}{2}\right)^2+\dfrac{67}{4}\)

Nhận xét : \(\left(3x-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow\left(3x-\dfrac{1}{2}\right)^2+\dfrac{67}{4}\ge\dfrac{67}{4}\)

\(\Leftrightarrow B\ge\dfrac{67}{4}\)

Dấu "=" xảy ra khi : \(x=\dfrac{1}{6}\)

Vậy...

23 tháng 10 2018

a)\(A=x^2-4x+15=\left(x-2\right)^2+11\)

\(\left(x-2\right)^2\ge0\) nên muốn \(x^2-4x+15\) có được GTNN thì \((x-2)^2=0\)

\(\Rightarrow Min_A=0+11=11\)

15 tháng 9 2018

a) x3 + 2x2 + x

= x3 + x2 + x2 + x

= x2 ( x + 1 ) + x ( x + 1 )

= ( x2 + x ) ( x + 1 )

15 tháng 9 2018

a)=x(x2+2x)

b)=x(x2+2xy+y2-9)

d)=x(x2-3x+2)

5 tháng 9 2020

Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...

a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)

\(=5x^3-4x-7\)

\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)

\(=13x^3-x^2+4x-5\)

b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)

c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

  \(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)

d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )

16 tháng 7 2017

Bài 2:

a, Sửa đề:

\(x^2-4=x^2+2x-2x-4=x\left(x+2\right)-2\left(x+2\right)\)

\(=\left(x+2\right)\left(x-2\right)\)

b, \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(a=x^2+7x+10\Rightarrow a+2=x^2+7x+12\)

\(\Rightarrow\left(1\right)=a\left(a+2\right)-24=a^2+2a-24\)

\(=a^2-4a+6a-24=a.\left(a-4\right)+6.\left(a-4\right)\)

\(=\left(a-4\right)\left(a+6\right)\)(2)

\(a=x^2+7x+10\) nên

\(\left(2\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right]\left(x^2+7x+16\right)\)

\(=\left(x+1\right).\left(x+6\right)\left(x^2+7x+16\right)\)

Chúc bạn học tốt!!!

16 tháng 7 2017

1,

Dùng định lý Bơ du :

\(f\left(-\dfrac{1}{3}\right)=3\left(-\dfrac{1}{3}\right)^3+10\left(-\dfrac{1}{3}\right)^2+3.\left(-\dfrac{1}{3}\right)+a-5=0\)

\(=>a=5\)

Vậy a = 5 thì A chia hết cho B .

b,

M = \(x^2-4x+4y^2+4y+5\)

= \(\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+5-\left(1+4\right)\)

\(=\left(x-2\right)^2+\left(2y+1\right)^2+0\)

Vậy GTNN của M = 0

khi x = 2 ; 2y + 1 = 0 => y = 1/2

5 tháng 11 2017

A = 2.(x^2-4x+4) - 18 = 2.(x-2)^2 - 18 >= -18

Dấu "=" xảy ra <=> x-2 = 0 <=> x=2 

Vậy Min A = -18 <=> x=2