Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)
\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy Min(A) = 1 khi x = -1/2
b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy Min(B) = \(\sqrt{3}\) khi x = 1
Em làm bài 2 nha!
\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)
+)\(A=0\Rightarrow x=\frac{3}{4}\)
+) A khác 0 thì (1) là pt bậc 2.
\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)
Vậy...
Bài 1: (bài nào nghĩ ra thì em làm trước)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1
Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)
\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2
Vậy Min C = 1 khi x = 2
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(-----------\)
Đặt \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và \(t=\sqrt{x}\) \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi \(x>0\)
Khi đó, ta biểu diễn lại \(\alpha\) dưới dạng biến số \(t\) như sau:
\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)
nên \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\) với mọi \(t>0\) \(\Rightarrow\) \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\) (do \(\Delta_t>0\) )
Dấu \("="\) xảy ra khi và chỉ khi \(2t^2-3t-3=0\)
Ta thành lập biệt thức \(D=b^2-4ca\) với tập xác định của pt là \(t\in\left(0;\infty\right)\) như sau:
\(\Delta_t=3^2+4.2.3=33\)
Do đó, ta tính được \(t_1=\frac{3-\sqrt{33}}{4};\) \(t_2=\frac{3+\sqrt{33}}{4}\)
Nhưng ta chỉ chấp nhận
\(t=\frac{3+\sqrt{33}}{4}\) (do điều kiện \(\left(i\right)\) ) làm nghiệm duy nhất của pt.
\(\Rightarrow\) \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
\(-----------\)
Mặt khác, ta lại áp dụng bđt \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:
\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\) \(\alpha=3\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Vậy, \(A_{min}=\frac{10}{3}\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Điều kiện x>0
Đặt a = 4x2 + 9x + 18 √x +9
b = 4x√x + 4x
Từ đó ta có A = a/b + b/a >= 2
Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a
Phần còn lại bạn tự làm nha
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)
\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)
Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)
Bài 1 :
ĐKXĐ : \(x\ge2\)
\(2x+5=6\sqrt{2x-4}\)
\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)
\(\Leftrightarrow4x^2+20x+25-72x+144=0\)
\(\Leftrightarrow4x^2-52x+159=0\)
Đến đây chịu :))
\(C=\frac{x^2-4x+5-9}{x^2-4x+5}=1-\frac{9}{x^2-4x+5}\)
ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1\Leftrightarrow\frac{9}{x^2-4x+5}\le\frac{9}{1}=9\Leftrightarrow\frac{-9}{x^2-4x+5}\ge-9\Leftrightarrow1+\frac{-9}{x^2-4x+5}\ge-8\)
=> Min C=-8 <=> x=2