Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : A = x^4 - 8x^2 +2
= ( x^2 )^2 - 2.x^2.4 + 8 - 6
= ( x^2 - 4 ) ^2 -6
Vì ( x^2 - 4 ) ^2 > hoặc = 0 vs mọi x ( " lớn hơn hoặc bằng " bn ghi kí hiệu nhé
=> ( x^2 - 4 )^2 -6 > hoặc = -6 vs mọi x
=> A > hoặc = - 6 vs mọi x
Vậy GTNN của A = -6 => ( x^2 - 4 )^2 = 0 .... ( bn tự giải nhé )
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/\(ĐKXĐ:x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)
\(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)
Đặt \(\frac{2}{x+1}=t\)
\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)
\(\Rightarrow minQ=1\Leftrightarrow t=1\)
\(\Leftrightarrow\frac{2}{x+1}=1\)
\(\Leftrightarrow x=1\left(tmđkxđ\right)\)
Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)
Dấu "=" xảy ra <=> a = b = 1
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)