K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(B=\frac{x^2+17}{x^2+7}=\frac{x^2+7+10}{x^2+7}=1+\frac{10}{x^2+7}\)

\(B\)dat GTNN \(\Leftrightarrow\)\(\frac{10}{x^2+7}\)nho nhat\(\Leftrightarrow x^2+7\)lon nhat

Ma \(x^2+7>=7\)nen B khong co GTNN

13 tháng 4 2022

cho B(x) = 0

\(=>-5x+30=0\Rightarrow-5x=-30\Rightarrow x=6\)

cho E(x) = 0

\(=>x^2-81=0\Rightarrow x^2=81=>\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

cho C(x) = 0

\(=>2x+\dfrac{1}{3}=0=>2x=-\dfrac{1}{3}=>x=-\dfrac{1}{6}\)

13 tháng 4 2022

bạn tham khảo hai câu này  nha vì mình ko biết là mấy câu còn lại

B(x)=-5x+30

cho B(x)=0

=> -5x+30=0

-5x=-30

x=-30:(-5)

x=-6

* Vậy nghiệm của đa thức B(x) là -6.

C(x)=2x+1/3

cho C(x)=0

=>2x+1/3=0

2x=-1/3

x=-1/3:2

x=-1/6

vậy nghiệm của đa thức C(x) là -1/6.

\(A=x^2+8x+16-9=\left(x+4\right)^2-9\ge-9\forall x\)

Dấu '=' xảy ra khi x=-4

6 tháng 5 2022

`A(x)=x^2-x-2`

`A(x)=x^2-2.x. 1/2+1/4-9/4`

`A(x)=(x-1/2)^2-9/4`

 Vì `(x-1/2)^2 >= 0 AA x`

 `=>(x-1/2)^2-9/4 >= -9/4 AA x`

Hay `A(x) >= -9/4 AA x`

Dấu "`=`" xảy ra `<=>(x-1/2)^2=0=>x-1/2=0=>x=1/2`

Vậy `GTN N` của `A(x)` là: `-9/4` khi `x=1/2`

12 tháng 10 2023

loading...  loading...  

12 tháng 9 2021

\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)

\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(A=x^2-8x+y^2-y+68\)

\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)

\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)

Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)

12 tháng 9 2021

\(A=\left(x^2+12x+36\right)+\left(y^2-2y+1\right)+3\\ A=\left(x+6\right)^2+\left(y-1\right)^2+3\ge3\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=1\end{matrix}\right.\)

\(A=x^2+y^2-2y+12x+40\)

\(=x^2+12x+36+y^2-2y+1+3\)

\(=\left(x+6\right)^2+\left(y-1\right)^2+3\ge3\forall x,y\)

Dấu '=' xảy ra khi x=-6 và y=1

12 tháng 9 2021

\(B=x^2+4y+4y^2+8x+42=\left(x^2+8x+16\right)+\left(4y^2+4y+1\right)+25=\left(x+4\right)^2+\left(2y+1\right)^2+25\ge25\)

Dấu = xảy ra khi x = -4; y = -1/2

12 tháng 9 2021

\(B=x^2+4y+4y^2+8x+42\)
\(B=x^2+8x+16+4y^2+4y+1+25\)
\(B=\left(x+4\right)^2\left(2y+1\right)^2+25\)
GTNN của B là 25
xảy ra khi (x+4)2=0 hoặc (2y+1)2=0
                 x+4=0     hoặc 2y+1=0
                 x=-4        hoặc 2y=-1
                 x= -4       hoặc   y=-1/2

\(A\ge1\forall x\)

Dấu '=' xảy ra khi x=0

\(B\ge-5\forall x\)

Dấu '=' xảy ra khi x=0

16 tháng 1 2022

\(A=x^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{min}=1\Leftrightarrow x=0\)

\(B=3x^4-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(B_{min}=-5\Leftrightarrow x=0\)