K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

(4x-4x+1) + (x+ \(\frac{1}{4x}\)-2)+ 2016=(2x-1)2 +(√x  -√ \(\frac{1}{4x}\))2 >=2016 đạt giá trị nhỏ nhất khi x=0,5

25 tháng 1 2019

GTNN là 1/2

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

25 tháng 10 2015

A = \(\frac{2x+3y}{2x+y+2}\) 

<=> A(2x + y + 2) = 2x + 3y 

<=> 2x.A + y.A + 2.A = 2x + 3y

<=> 2x(1 - A) + (3 - A).y = 2.A

Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]< (4x+ y2) .[(1 - A)+ (3 - A)2

=> (2.A)< 2A2 -8A + 10

<=> - 2A- 8A  + 10 > 0

<=> A+ 4A - 5 <

<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1

Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y= 1 => x ; y

Max A = 1 tại....

 

 

12 tháng 12 2016

\(A=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2013\ge2013+1=2014;;;.\)

A min = 2014 khi x =1/2 

5 tháng 7 2020

\(P=\left(4x^2\right)-3x+\left(\frac{1}{4x}\right)+2015\)

\(=\left(4x^2-4x+1\right)+x+\frac{1}{4x}+2014\)

\(=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\)

Áp dụng bđt Cauchy cho 2 số không âm ;

\(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)

\(< =>\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\ge0+1+2014=2015\)

Vậy \(Min_p=2015\)xảy ra khi \(x=\frac{1}{2}\)