\(\frac{x}{2}+\frac{2}{x-1}\) (với x>1)

2, A=<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

1,\(A=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)\(\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=\frac{3}{2}\)

Vậy Amin\(=\frac{3}{2}\Leftrightarrow\frac{x-1}{2}=\frac{2}{x-1}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Xét ĐK ta thấy x=3.

2,Áp dụng bđt Cô-si:

...........\(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\ge2y^2\)

...........\(\frac{y^2z^2}{x^2}+\frac{x^2z^2}{y^2}\ge2z^2\)

\(\frac{x^2z^2}{y^2}+\frac{x^2y^2}{z^2}\ge2x^2\)

Mk nghĩ đề phải là x^2+y^2+z^2=1

\(\Rightarrow VT\ge x^2+y^2+z^2=1\)

Vậy Amin=1 khi \(x=y=z=\sqrt{\frac{1}{3}}=\frac{\sqrt{3}}{3}\)

Câu cuối chưa bt làm.

2 tháng 6 2016

mk ko bit

mik tính ko ra

17 tháng 9 2018

\(P=\frac{1}{1+xy}+\frac{1}{1+xz}+\frac{1}{1+yz}\ge\frac{9}{3+xy+xz+yz}\)

Lại có :\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow xy+yz+zx\le x^2+y^2+z^2\le3\)

\(\Rightarrow P\ge\frac{9}{3+3}=1.5\)

Dấu bằng xảy ra khi x=y=z=1

10 tháng 1 2016

Bạn dùng HĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) nha
Bài làm :
tự c/m bđt trên. 
Áp dụng t đc \(A^2\ge3\left(y^2+x^2+z^2\right)\)
->\(A\ge\sqrt{3}\)
Dấu - xảy ra khi x=x=z và x^2+y^2+z^2=1=>x=y=z=....
Gút lắc 

10 tháng 1 2016

nhìn có vẻ khó nhỉ...

2 tháng 8 2017

Áp dụng BĐT Cauchy Shwarz, ta có:

\(M=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)

\(\ge\frac{\left(1+1+1\right)^2}{1+1+1+xy+yz+xz}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\)

\(=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

2 tháng 8 2017

\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu = xảy ra khi \(x=y=z=1\)

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

3 tháng 2 2020

Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)

Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)

\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)

4 tháng 2 2020

ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.

2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)

\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)

\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)

\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)