Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)
Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)
Phải không ta???
Ta có A=|x-3|+|x-2|
= |3-x|+|x-2|
\(\ge\)\(\left|3-x+x-2\right|\)=|1|=1
=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow2\le x\le3\)
Vậy Min A=1 khi \(2\le x\le3\)
- tk mk nha
- *****CHÚC BẠN HỌC GIỎI*****
A=\(\left|x-3\right|+\left|x-2\right|\)
A= \(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|\)
A \(\ge\left|1\right|\)=1
vậy Amin=1 khi x=3 hoặc x=2
a. 1</x-2/<4
=>/x-2/ thuộc {2;3}
=>x-2 thuộc {-2;2;-3;3}
=>x thuộc {0;4;-1;5}
b./x+45-40/+/y+10-11/ nhỏ hơn bằng 0
mà /x+45-40/> = 0
/y+10-11/>=0
nên /x+45-40/+/y+10-11/=0
=>x+45-40=0
=>x+5=0
=>x=-5
=>y+10-11=0
=>y+(-1)=0
=>y=1
BẠN TẢI PHOTOMATH VỀ MÁY. RỒI CHỤP HÌNH GỬI CHO NÓ GIẢI BÀI