Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x^2+7x+100=2\left(x+\frac{7}{4}\right)^2+\frac{751}{8}\ge\frac{751}{8}\)
Dấu " =" xảy ra khi
\(x=\frac{-7}{4}\)
Vậy..............................
\(b,4x^2-25x+9=4\left(x^2-\frac{25}{4}x+\frac{9}{4}\right)\)
\(=4\left(x-\frac{25}{8}\right)^2-\frac{481}{16}\ge\frac{-481}{16}\)
Dấu "=" xảy ra khi \(x=\frac{25}{8}\)
Vậy............................................
a) Ta có: \(A=x^2-5x+11\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)
hay \(x=\frac{5}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\) là \(\frac{19}{4}\) khi \(x=\frac{5}{2}\)
b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+65\right)\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\)
Ta có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x-7=0
hay x=7
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7
a, Ta có : \(-x^2+2x-1-3\)
\(=-\left(x-1\right)^2-3\)
Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)
=> \(-\left(x-1\right)^2-3\le-3\forall x\)
Vậy Max = -3 <=> x = 1 .
b, Ta có : \(-x^2-4x-4+4\)
\(=-\left(x+2\right)^2+4\)
Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)
=> \(-\left(x+2\right)^2+4\le4\forall x\)
Vậy Max = 4 <=> x = -2 .
c, Ta có : \(-9x^2+24x-16-2\)
\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)
\(=-9\left(x-\frac{4}{3}\right)^2-2\)
Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)
=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)
Vậy Max = -2 <=> x = \(\frac{4}{3}\) .
d, Ta có : \(-x^2+4x-4+3\)
\(=-\left(x-2\right)^2+3\)
Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2+3\le3\forall x\)
Vậy Max = 3 <=> x = 2 .
e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)
\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)
\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)
Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)
=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)
Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
A= 2.(x2+2.x.7/4+49/16)2+751/8
= 2.(x+7/4)2+751/8
Lại có (x+7/4)2\(\ge\)0
=> A \(\ge\)751/8
Vậy Min A = 751/8 <=> x= -7/4
b,B= (2x)2-2.2x.25/4+625/16 -481/16
= (2x-25/4)2-481/16
Lại có (2x-25/4)2\(\ge\)0
=> B \(\ge\)-481/16
Vậy min B = -481/16 <=> x= 25/8
(Máy mình hỏng từ đây mình làm tắt một chút)
c, C= (3x)2-24x+16+40= (3x-4)2+40
Lại có (3x-4)2\(\ge\)0
=> C \(\ge\)40
Vậy Min C = 40 <=> 3x-4 =0 <=> x= 4/3
d, D= (2x)2+4x+1+10= (2x+1)2+10
Lại có (2x+1)\(\ge\)0
=> D\(\ge\)10
Vậy min D = 10 <=> x= -1/2
e,E= x^2-2x+1+y2 -4y+4+2
= (x-1)2+(y-2)2+2
Lại có (x-1)2+(y-2)2\(\ge\)0
=> E \(\ge\)2
Vậy Min E = 2 <=> x= 1; y=2