K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

Vì \(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Lại có: \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

Vậy ...

3 tháng 10 2019

Bài 1:

\(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Vì \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

a: \(F=x^3y^2z-xy^2z^3\)

Khi x=3; y=-2; z=1 thì \(F=3^3\cdot\left(-2\right)^2\cdot1-3\cdot\left(-2\right)^2\cdot1^3=27\cdot4-3\cdot4=96\)

c: x=-y; y=2z

nên x=-2z

Thay x=-2z; y=2z vào F=-1/8, ta được:

\(\left(-2z\right)^3\cdot\left(2z\right)^2\cdot z-\left(-2z\right)\cdot\left(2z\right)^2\cdot z^3=\dfrac{-1}{8}\)

=>\(-8z^3\cdot4z^2\cdot z+2z\cdot4z^2\cdot z^3=\dfrac{-1}{8}\)

\(\Leftrightarrow-24z^6=\dfrac{-1}{8}\)

\(\Leftrightarrow z^6=\dfrac{1}{192}\)

hay \(z=\pm\dfrac{1}{2\sqrt{3}}\)

3 tháng 8 2015

1. ta có 

\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66

\(3^x.3+3^x.3.4+3^x:3\)=66

3x.3+3x.12+3x.1/3=66

3x.(3+12+1/3)=66

3x.64/3=66

3x=66:64/3

3x=2187

3x=37

=> x=7

2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)

  \(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)

từ đây suy ra 

 

 

 

 

29 tháng 3 2021

3+12+1/3=64/3 ???? vô lí

lấy máy tính thử tính coi

20 tháng 2 2020

 \(\text{A=|x| - |x-2| }\le|x-x+2|=2\)

=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)