K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=5x^2+x+1\)

\(=>5\left(x^2+\frac{1}{5}x+\frac{1}{5}\right)\)

\(=>5\left(x^2+2.x.\frac{1}{10}+\frac{1}{100}+\frac{19}{100}\right)\)

\(=>5\left(\left(x+\frac{1}{10}\right)^2+\frac{19}{100}\right)\)

\(=>\frac{19}{20}+5\left(x+\frac{1}{10}\right)^2\ge\frac{19}{20}\)

MIN B = \(\frac{19}{20}< =>x+\frac{1}{10}=0=>x=\frac{-1}{10}\)

7 tháng 7 2016

B = 5x2 + x - 1

 \(=5\left(x^2+\frac{1}{5}x-\frac{1}{5}\right)=5\left[x^2+2.\frac{1}{10}.x+\left(\frac{1}{10}\right)^2-\left(\frac{1}{10}\right)^2-\frac{1}{5}\right]\)

   \(=5\left[\left(x+\frac{1}{10}\right)^2-\frac{21}{100}\right]=5\left(x+\frac{1}{10}\right)^2-\frac{21}{20}\ge-\frac{21}{20}\)

               Vậy MinB = -21/20 khi \(x+\frac{1}{10}=0\Rightarrow x=-\frac{1}{10}\)

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

21 tháng 10 2021

a: Ta có: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=2

21 tháng 10 2021

bạn làm rõ ra dc ko mik ko hiểu

 

27 tháng 3 2021

A=5x2+2y24xy8x4y+19=(2x24xy+2y2)+4(xy)+(3x212x)+19=2(xy)2+4(xy)+3(x24x+4)+7=2[(xy)2+2(xy)+1]+3(x2)2+5=2(xy+1)2+3(x2)2+50Du "=" xy ra khi{xy+1=0x2=0{x=2y=x+1=3VyMinA=5{x=2y=3

27 tháng 3 2021

mik viết 5x2 là 5x mũ 2 nha

25 tháng 9 2023

loading...loading...

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

3 tháng 10 2021

\(A=\left(4x^2-4xy+y^2\right)+\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{21}{4}\\ A=\left(2x-y\right)^2+\left(x+\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\\ A_{min}=-\dfrac{21}{4}\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-3\end{matrix}\right.\)

\(B=\left[\left(x-1\right)\left(x+2\right)\right]\left[x\left(x+1\right)\right]=\left(x^2+x-2\right)\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-1=\left(x^2+x-1\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow x^2+x-1=0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\\ \Leftrightarrow\left(x+\dfrac{1-\sqrt{5}}{2}\right)\left(x+\dfrac{1+\sqrt{5}}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)

21 tháng 9 2021

\(B=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

\(minB=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

21 tháng 9 2021

\(B=2x^2+y^2-2x+2xy+2y+3\\ B=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(x^2-4x+4\right)-2\\ B=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x-2\right)^2-2\\ B=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)

\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)

\(=2^{2023}-1\)