Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4+2x^2+3\ge3\)
dấu "=" xảy ra khi và chỉ khi \(x=0\)
\(< =>MIN:A=3\)
A = (x^2+x).(x^2+x-4)
= (x^2+x-2+2).(x^2+x-2-2)
= (x^2+x-2)^2 - 2^2
= (x^2+x-2)^2 - 4 >= -4
Dấu "=" xảy ra <=> x^2+x-2 = 0 <=> x=1 hoặc x=-2
Vậy GTNN của A = -4 <=> x=1 hoặc x=-2
Tk mk nha
\(\left(x^2-2x\right)\left(x^2-2x+2\right)=\left(x^2-2x+1-1\right)\left(x^2-2x+1+1\right).\)
\(=\left[\left(x-1\right)^2-1\right]\left[\left(x-1\right)^2+1\right]\)
\(=\left(x-1\right)^4-1\ge0-1=-1\)
Vậy GTNN của biểu thức là -1
A = x2 - 3x + 5 ( x2 chứ nhể )
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Dấu "=" xảy ra <=> x = 3/2
=> MinA = 11/4 <=> x = 3/2
B = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = 0
=> MinB = 5 <=> x = 0
a. A=x2-6x+13
=x2-2.x.3+32+4
=(x-3)2+4 > 4
=> A có GTNN là 4
<=> x-3=0
<=> x=3
b. B=4x-x2
=-x2+4x-4+4
=-(x2-4x+4)+4
=-(x-2)2+4 < 4
=> GTLN của B là 4
<=> x-2=0
<=> x=2
\(A=\left(x^2+2.x.\frac{m}{2}+\frac{m^2}{4}\right)-\frac{m^2}{4}+n=\left(x+\frac{m}{2}\right)^2-\frac{m^2-4n}{4}\ge-\frac{m^2-4n}{4}\)