K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

GTLN hay GTNN?

\(-\left|2-3x\right|\le0\forall x\)

\(\Leftrightarrow-\left|3x-2\right|+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

28 tháng 11 2021

Ta thấy:

IX+2/3I luôn lớn hoặc bằng 0

=>IX+2/3I+2 luôn lớn hơn hoặc bằng 2

=>Để M lớn nhất thì M phải bằng 2

Vậy GTNN của M là 2

28 tháng 11 2021

Ta có \(\left|x+\dfrac{2}{3}\right|\ge0\) với mọi x 

\(\Rightarrow\left|x+\dfrac{2}{3}\right|+2\ge2\) với mọi x 

\(\Rightarrow M\ge2\) với mọi x 

Dấu bằng xảy ra khi và chỉ khi \(\left|x+\dfrac{2}{3}\right|=0\) 

                                               \(\Leftrightarrow x+\dfrac{2}{3}=0\) 

                                               \(\Leftrightarrow x=-\dfrac{2}{3}\) 

Vậy Mmin = 2 \(\Leftrightarrow x=-\dfrac{2}{3}\) 

13 tháng 5 2016

x=0 biểu thức có gt là 8

13 tháng 5 2016

A=x2+5x+8

A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)

\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)

\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)

\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

=>GTNN của A là 7/4

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

12 tháng 9 2021

\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)

\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(A=x^2-8x+y^2-y+68\)

\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)

\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)

Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

$|x+2,8|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối

$\Rightarrow B=|x+2,8|-3,5\geq 0-3,5=-3,5$
Vậy $B_{\min}=-3,5$ khi $x+2,8=0\Leftrightarrow x=-2,8$

25 tháng 3 2017

Ta có /x-1/ + /x-2/ lớn hơn hoặc bằng /x-1+2-x/

=> /x-1/ + /x-2/ lớn hơn hoặc bằng /1/

vậy GTNN của biểu thức /x-1/ + /x-2/ là 1 xảy ra khi và chỉ khi (x-1) và (2-x) cùng dấu

30 tháng 12 2018

Để A=|x|+|8-x| nhỏ nhất thì A<=|x+8-x|

A<=8

Vậy A nhỏ nhất khi A=8

30 tháng 12 2018

Để A=|x|+|8-x| nhỏ nhất thì A<=|x+8-x|

A<=8

Vậy A nhỏ nhất khi A=8

12 tháng 9 2021

\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)

\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)