Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
\(a,=x^2+2x+1+2019=\left(x+1\right)^2+2019\ge2019\) dấu"=" xảy ra<=>x=-1
b,\(=m^2+2.2m+4-5=\left(m+2\right)^2-5\ge-5\) dấu"=" xảy ra<=>m=-2
c, \(=x-2\sqrt{x}+10=x-2\sqrt{x}+1+9=\left(\sqrt{x}-1\right)^2+9\ge9\)
dấu"=" xảy ra<=>x=1
b, \(4x-8\sqrt{x}+2020=4x-2.2.2\sqrt{x}+4+2016=\left(2\sqrt{x}-2\right)^2+2016\ge2016\)
dấu"=" xảy ra<=>x=1
2020.2019^5 = (2019+1).2019^5 = 2019^6+2019^5 làm tương tự với các x còn lại
A= 2019^6 - 2019^6 +.....-2019^2-2019 +2020 = 1 vậy A=1
Sửa đề: \(M=2019\sqrt{x-2}+2020\sqrt{10-y}\)
+Có: \(\sqrt{x-2}\ge với\forall x\\ \sqrt{10-y}\ge0với\forall x\\ \Rightarrow2019\sqrt{x-2}+2020\sqrt{10-y}\ge0\\ \Leftrightarrow M\ge0\)
+Dấu ''='' xảy ra khi
\(\sqrt{x-2}=0\\ \Leftrightarrow x=2\)
\(\sqrt{10-y}=0\\ \Leftrightarrow y=10\)
+Vậy \(M_{min}=0\) khi \(x=2,y=10\)
TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM