Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Ta có \(\left(x-\dfrac{2}{7}\right)^{2008}\ge0\) với mọi x
\(\left(0,2-\dfrac{1}{5}y\right)^{2010}\ge0\) với mọi y
\(\left(-1\right)^{200}=1\)
\(\Rightarrow N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}+\left(-1\right)^{200}\ge1\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{7}\right)^{2008}=0\\\left(0,2-\dfrac{1}{5}y\right)^{2010}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\0,2-\dfrac{1}{5}y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\\dfrac{1}{5}y=0,2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
Vậy Nmin = 1 \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
\(N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}-1\ge-1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\\dfrac{1}{5}-\dfrac{1}{5}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
\(P=\left|x-1\right|+\left|2010-x\right|+\sqrt{2019}\)
\(P\ge\left|x-1+2010-x\right|+\sqrt{2019}=2009+\sqrt{2019}\)
\(\Rightarrow P_{min}=2009+\sqrt{2019}\) khi \(\left\{{}\begin{matrix}x-1\ge0\\2010-x\ge0\end{matrix}\right.\) \(\Rightarrow1\le x\le2010\)