Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
\(A=x^4-2x^3+3x^2-4x+7\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)
Vậy \(A_{min}=5\Leftrightarrow x=1\)
ĐKXĐ: ...
\(P=\frac{8x^2-12x-4}{4\left(x-2\right)^2}=\frac{-17\left(x^2-4x+4\right)+25x^2-80x+64}{4\left(x^2-4x+4\right)}=-\frac{17}{4}+\frac{\left(5x-8\right)^2}{4\left(x-2\right)^2}\ge-\frac{17}{4}\)
Dấu "=" xảy ra khi \(x=\frac{8}{5}\)
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
\(x^4-2x^3+3x^2-4x+2015=\left(x^2-x\right)^2+2\left(x-1\right)^2+2013\)
Mà \(\left(x^2-x\right)^2\ge0\forall x\); \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow Min=2013\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Cách này cũng khá giống của bạn Nguyễn Văn Hạ nhưng mình nghĩ dễ bến đối hơn chỗ \(x^4-2x^3+x^2\rightarrow x^2\left(x-1\right)^2\)
\(A=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2015\right)\)
\(=x^2\left(x-1\right)^2+2\left(x-1\right)^2+2013\ge2013\)
Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1
Vậy \(A_{min}=2013\Leftrightarrow x=1\)