\(C=x^2-4xy+5y^2+10x-22y+28\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

hjvbm 

28 tháng 8 2020

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)

Đẳng thức khó tìm quá huhu

1 tháng 10 2017

max A= -201 tại x=10(câu này dễ)

B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^

17 tháng 7 2018

\(R=x^2-4xy+5y^2+10x-22y+28\)

\(R=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(R=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\left(y^2-2y+1\right)+2\)

\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow R\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy ...

6 tháng 8 2017

\(A=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(A_{min}=2\) tại \(x=-3;y=1\)

10 tháng 11 2019

bạn có thể tham khảo ở đây nhé

https://hoc24.vn/hoi-dap/question/394806.html

29 tháng 8 2020

Bài làm:

Ta có: \(x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min = 2 khi x = -3 và y = 1

29 tháng 8 2020

Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)

\(\Rightarrow A=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Vì \(\left(x-2y+5\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2+5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+3=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)